百科问答小站 logo
百科问答小站 font logo



是否存在不可数个实数,其中任意有限多个在有理数上线性无关? 第1页

  

user avatar   lljpcz 网友的相关建议: 
      

高代上讲的线性无关,一般是指有限个向量线性无关。

如果要讨论无限个向量线性无关,就需要定义广义线性无关集,这里广义线性无关的定义就和你题目中提出的一样,即

我们称一个向量集(可以有无穷个元素)是广义线性无关集,当且仅当它的每一个有限元素子集是线性无关集。

在不引起混淆的情况下,我们可以将“广义”省去。

利用这里的广义线性无关的定义,就可以定义广义基,即Hamel基。即一个向量集里的每个元素都可以被唯一的表示成其Hamel基中有限个元素的线性组合。

在这个意义上,我们可以证明以下命题是选择公理的充要条件:

任何一个向量集都有Hamel基。

必要性很好证明,利用Zorn引理,模仿一下另外一位答主的作答即可。

充分性据说不容易?我贴个链接math.lsa.umich.edu/~abl

最后,如果要说明实数在有理数域上的任意一组Hamel基都是符合要求的集合,只需要再说明这组基不可数。

反设它可数,那么全体实数可以可列个元素的某个有限子集的有理线性组合表示出,这意味着实数可数,产生了矛盾。




  

相关话题

  如何通俗地解释混沌理论(chaos)和分岔理论(bifurcation)? 
  请问第五题的导数怎么求,老是求不出? 
  P是素数,(2^2p)-3一定是素数吗? 
  请问这个不等式的证明思路是怎样的? 
  一致连续性与积分是否有潜在关系?在数学分析,尤其是积分中有何应用? 
  数学分析中的习题能否在考研中当作定理直接使用? 
  比0.000······1更小的非0数,是什么? 
  请问这道题有没有除了泰勒公式之外的其他解法? 
  为什么要公理化实数,而不是从自然数导出? 
  如何证明呢? 

前一个讨论
一个一般的二次型等于0,这个方程应该如何求通解?
下一个讨论
怎么证明分块矩阵(A B -B A)行列式非负,我感觉这是对的 但又说不清为什么?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利