百科问答小站 logo
百科问答小站 font logo



目前最小的级数形式的无穷大是多少? 第1页

  

user avatar   lljpcz 网友的相关建议: 
      

最小当然是不存在的

任取 , 都是发散的。当然,这个结论意义不大,因为这些级数都是同阶无穷小。

如果你还要再小一点 ,也是发散的;再进一步 也是发散的。

一般的,考虑一个充分大的 (为了避免出现 负数的情况,,准确的说 需要多大是取决于你在做几次迭代的,但是我们就先不管这些细节了),我们定义 ; 。

那么对于任意 , 都是收敛的。

现在的问题是,是否存在一个发散正项级数 ,对任意 和 ,都成立 。

这个问题我们留作习题吧(逃)




  

相关话题

  e^6≈π^4+π^5有什么数学背景吗? 
  如何利用积分第二中值定理和柯西收敛准则证明Abel判别法? 
  现代理论物理的新成果中,有没有因为使用不严格的数学最后被证明因此导致错误结果的案例? 
  函数方程 f(xy)=f(x)+f(y) 的严格解是什么?解是否唯一? 
  如何求出图中数列的通项公式? 
  1 不可以被 3 除尽,但为什么圆可以被三等分? 
  有没有证明某函数不存在初等表示的一般思路? 
  大四年级,完全没接触过高数,目前对机器学习产生浓厚兴趣,该如何学习数学? 
  数学系的教学模式是否违反直觉? 
  有哪些数学知识概念已经更新或改变,但不为大众所知? 

前一个讨论
为什么不可数个互不相同的集合之并集可以是可数集?
下一个讨论
如何评价张一鸣在群里批评员工上班时间聊游戏?





© 2025-05-29 - tinynew.org. All Rights Reserved.
© 2025-05-29 - tinynew.org. 保留所有权利