百科问答小站 logo
百科问答小站 font logo



菲赫金哥尔茨的《微积分学教程》中绪论中关于实数强稠密性的定理怎么理解? 第1页

  

user avatar   ling-jian-94 网友的相关建议: 
      

基本上来说是阿基米德性的应用,所谓阿基米德性最简单的描述是:对于任意正实数c,存在一个正整数n,使得。如果实数公理选择戴德金分割等几个公理,则可以从中证明出这个性质。比如说用戴德金公理,取,这个整数集合有上界,从而有最大元,取最大元 + 1就是要求的整数。

进一步,满足的整数有最小元,所以一定存在一个整数n,使得:

我们接下来就用这个性质

回到原题,首先证明存在一个有理数,也就是说要找到

也就是

我们希望取一个合适的m,使得中间至少有一个整数,那么只需要让就可以了

根据阿基米德性,存在一个m,使得,此时有

这时我们再用第二次阿基米德性,根据前面的推论,存在n,使得

根据左半边不等式有

因此有

也就是

那么至少存在一个有理数。

接下来,由于有理数也是实数,设上有有理数,而上有有理数,依次类推,由数学归纳法得到有无穷多个有理数




  

相关话题

  在上学的同时自学完这些物理、数学、计算机技术、哲学等内容,大概需要多长时间? 
  如何证明非零自然数的平方的倒数和为π^2/6? 
  如何用初等函数证明 π 不是有理数? 
  熵权TOPSIS中二级指标的相对接近度怎么计算,一般计算的都是一级指标的相对接近度,困扰我好久了。? 
  偶极矩的“矩”在哪里? 
  李煌的阶乘计算小技巧,与斯特林公式有什么区别? 
  有没有数学大神,求救? 
  为什么法语的数字表达方式那么奇怪?世界上还有其它主要语种采取类似的数字逻辑吗? 
  数学分析上的定理证明过程需要掌握到什么程度? 
  这道数列极限题该怎么做啊? 

前一个讨论
如何评价《女博士在京辛酸买房记:同学想读博吗?先买个房吧》一文?
下一个讨论
圣彼得堡悖论,期望与实际相差为何这么大?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利