百科问答小站 logo
百科问答小站 font logo



多项式方程互异根的数目利用矩阵结式怎么求?利用最大公因式的次数怎么确定?望举例说明!感谢各位大佬!? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

首先,结式 是用来判断两个多项式 有无同根,有则等于0.

然后,一个多项式 和自己的导数 求结式,如果 ,则说明原多项式 有重根,即两者存在非平凡的公因式。

根据以上信息,则判断一个多项式互异的根的个数,可以制定以下算法:

  • 若 ,则说明 无重根,则由代数基本定理,多项式的次数 就是互异根的个数。
  • 若 ,这种情况稍微麻烦一点。通过辗转相除,求出两者的最大公因式 ,最后原多项式的次数与公因式的次数之差,就是我们需要的答案,即 .

例如, ,它的导数求得 ,它们的结式肯定为0,用辗转相除法(其实用肉眼观察法)可知最大公因式为 ,于是最后 的互异的根的个数为

确实 互异的根只有两个 和 .


如果是求不同实根的个数,则利用施图姆定理,这也是现成的。

对于多项式的内容,我推荐


我以前还看过刘培杰工作室黑皮书系列的《高等代数》上册,专门将讲项式的一些初等实用的内容,可惜我找不到了。后面有机会补充吧。




  

相关话题

  有哪些比较好的数学分析和高等代数的公开课(数学系)? 
  线性空间,对偶基,过渡矩阵。这道题这样做正确吗? 
  可交换矩阵的求法有几种? 
  为什么要用文字定义多项式,而不是直接将多项式函数定义为多项式? 
  解方程的实质意义是什么? 
  为什么需要证明「1+1=2」? 
  如果引进新的运算,一元五次方程会不会有通用的求根公式? 
  代数、几何能否联系一起? 
  n阶矩阵A的各行各列只有一个元素是1或−1,其余元素均为0.是否存在正整数k,使得A^k=I? 
  有理数的开方,是否能取遍实数? 换句话说,是否存在无理数,不是某有理数的开方? 

前一个讨论
概率学什么样的事件都有可能,那么能否通过概率学来给各种自然规律发生事件关系建模代替一切学科和公式?
下一个讨论
哪句话或者哪个例子能推翻宿命论?能证明宿命论是错误的?





© 2025-01-31 - tinynew.org. All Rights Reserved.
© 2025-01-31 - tinynew.org. 保留所有权利