百科问答小站 logo
百科问答小站 font logo



为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 第1页

  

user avatar   uhometitanic 网友的相关建议: 
      

如果 是有限维向量空间,那麽对於任何线性算子 均有:

,其中

(这条式把 的basis representation写出来就很容易证明)

是满秩意味着 ,於是根据上式这是等价於 ,亦即 只有零解

事实上,对於有限维向量空间 和线性算子 ,以下句子全部等价:

  1. 可逆
  2. 是单射
  3. 是满射
  4. 只有零解
  5. 存在唯一解
  6. 如果 是基底, 也是基底
  7. 如果 是 中的开集, 也是 中的开集
  8. 的matrix representation中所有行都是linear independent
  9. 的matrix representation中所有列都是linear independent
  10. 经过有限次elementary row operations後转换成identity
  11. 经过有限次elementary column operations後转换成identity
  12. 不是 的eigenvalue
  13. 的dual (定义为 )可逆

以上所说的在无限维向量空间中不适用




  

相关话题

  如何通过很多组相互包含的换算数据求解尽可能精确的换算比例? 
  怎么样是物理地物理? 
  如何证明 ln^2(x+1)>ln(x)·ln(x+2)? 
  你曾经看过哪些精彩的数学书? 
  如何评价 2021 年「华为杯」中国研究生数学建模竞赛? 
  如果微积分是中国人发明的,那现在的数学符号会是什么样子? 
  天赋不够的人可以做数学科研吗? 
  我今年16岁,昨天花了2个小时用梅涅劳斯逆定理证明了帕斯卡定理,那我在数学方面有天赋吗? 
  有没有大佬会算这个无穷级数? 
  各个学科内都有哪些「很美」的公式或者结论?它们是大自然的鬼斧神工还是人类的匠心独造? 

前一个讨论
大一微积分∫e*(-pt)sinωt dt(p>0,ω>0)这类问题如何解决?
下一个讨论
如何看待nature astronomy的一篇论文认为普朗克卫星的数据预示了宇宙可能是闭合的?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利