百科问答小站 logo
百科问答小站 font logo



代数、几何能否联系一起? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

最近有位女数学家给出了康威结不可切的证明,很美,证明和人都很美.

在扭结理论中,每一个有理结(rational knot)可以表示为一个连分数,反过来一个连分数可以决定一个有理结,并且有理结之间也有类似于有理数环上的加法与乘法的运算,也就是说两者是同构的关系。

甚至还有一个神奇的基本定理:如果两个有理结的连分数表示化成有理数后相等,那么这两个有理结同痕——可以在不破坏扭结的情况下,通过抽拉彼此相互转化。

扭结理论的研究非常困难,目前就连基本的分类、表示的问题都没有得到很好的解决。但是每一种研究方法都独具特色:最基本地,利用扭结的基本拓扑性质去进行分类,环绕数、涂色数、交叉点……;用一些特别的多项式(例如 Jones 多项式等)可以解决扭结部分分类;还有利用三维扭结补空间的基本群;研究通过扭结诱导的 Seifert 曲面性质……


具体的内容还是查相关文献:如果是刚入门看科普性质的书,可以看姜伯驹《绳圈的数学》(这本书其实也不简单)

这本书很早就绝版了,比较便宜的书不是旧书就是打印版本的。

如果想很扎实地去全面了解,可以看 Adams《The Knot Book——An Elementary Introduction to the Mathmatical Theory of Knots》,当然还有GTM175。

电子书网上找一下吧,原版太贵买不起。




  

相关话题

  面积与体积的精确定义究竟是什么? 
  为什么n维欧式空间中的单位球面(n-1 sphere)的表面积和体积,在 n 趋于 ∞ 时,都趋于0? 
  代数几何应该怎样学? 
  正三棱锥内切球的四个切点(两类)分别在三角形的什么位置? 
  如何理解哈密顿-凯莱定理? 
  n维向量空间V中向量的维数是否为n维? 
  一个边长为a的正方形,能否用三个直径为a的圆完全覆盖? 
  立体几何比平面几何难吗? 
  曲率公式是怎么推导的? 
  超越函数能因式分解吗? 

前一个讨论
如何评价穿越古代以数分为实数、虚数为开头写一本数学书?
下一个讨论
圆周率 π 应该如何用极限或其它的微积分语言表示?是否可用极限或其它的微积分语言定义圆周率 π ?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利