最近有位女数学家给出了康威结不可切的证明,很美,证明和人都很美.
在扭结理论中,每一个有理结(rational knot)可以表示为一个连分数,反过来一个连分数可以决定一个有理结,并且有理结之间也有类似于有理数环上的加法与乘法的运算,也就是说两者是同构的关系。
甚至还有一个神奇的基本定理:如果两个有理结的连分数表示化成有理数后相等,那么这两个有理结同痕——可以在不破坏扭结的情况下,通过抽拉彼此相互转化。
扭结理论的研究非常困难,目前就连基本的分类、表示的问题都没有得到很好的解决。但是每一种研究方法都独具特色:最基本地,利用扭结的基本拓扑性质去进行分类,环绕数、涂色数、交叉点……;用一些特别的多项式(例如 Jones 多项式等)可以解决扭结部分分类;还有利用三维扭结补空间的基本群;研究通过扭结诱导的 Seifert 曲面性质……
具体的内容还是查相关文献:如果是刚入门看科普性质的书,可以看姜伯驹《绳圈的数学》(这本书其实也不简单)
这本书很早就绝版了,比较便宜的书不是旧书就是打印版本的。
如果想很扎实地去全面了解,可以看 Adams《The Knot Book——An Elementary Introduction to the Mathmatical Theory of Knots》,当然还有GTM175。
电子书网上找一下吧,原版太贵买不起。