百科问答小站 logo
百科问答小站 font logo



如何证明这个整系数线性方程组解的估计? 第1页

  

user avatar   chun-cui-8-18 网友的相关建议: 
      

设 各分量的绝对值不超过 , 且 . 求证: 存在 , 适合 , 且 , 其中 .

证明: 不妨设 可逆. 此时 . 于是我们自然地要考虑方程 , 其解向量恰为 , 这里 . 根据众所周知的Cramer法则, , 其中 由 将第 列 替换为 而得到. 可以预见, 即为所求, 其中 . 细节留给读者; 不过为了完整性, 一些关键步骤可以修饰为下面的习题.

对于 , 回忆一下 , 借此证明:

  1. 若 均为整数, 则 也是整数.
  2. 若 , 则 .

呃对了...还需要用到平凡的估计 .

(话说好像证出来一个比原题稍微强一点的结论欸




  

相关话题

  这个线性代数题应该怎么做? 
  矩阵特征值与矩阵本身的关系是什么? 
  若向量组A可以由向量组B线性表示,为何r(A)<=r(B)? 
  奇异值分解(SVD)有哪些很厉害的应用? 
  能否通过列举一些代数式、方程加以分析、说明,直观解释阿贝尔定理(Abel–Ruffini th.)? 
  矩阵的逆对应于线性变换的逆变换,那么矩阵的转置对应于线性变换的什么? 
  这种类型行列式的问题,该如何构造进行求解呢? 
  矩阵思维是什么意思? 
  如何学习高等代数?高等代数注重定理证明吗?学习数分需要会各种证明,高代也这样吗?高代注重计算吗? 
  线性方程组的解的结构怎么理解? 

前一个讨论
什么是天文学鸭( ̄^ ̄)ゞ?
下一个讨论
向量有除法吗?高中数学人教版选修2-1的思考题?





© 2025-05-30 - tinynew.org. All Rights Reserved.
© 2025-05-30 - tinynew.org. 保留所有权利