百科问答小站 logo
百科问答小站 font logo



很好奇,如何证明行列式就是高维多边形体积? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

正交基

立方体的体积最容易理解。

设两个非零正交的向量

那么以他们为邻边的矩形面积为:

若是三个两两正交的非零向量,则有

于是容易将 维立方体体积公式推广为

为了方便,我将这组向量组成的矩阵记为

而正交向量总可以通过旋转得到标准正交基:

其中 是正交阵( ), 是对角矩阵, 是单位阵,并且

https://www.zhihu.com/video/1144305035453190144

由前面的 维立方体体积公式,恰好

所以,对于正交向量组,体积与行列式的关系如上,其中符号是为了区别左右手坐标系。

一般基

对于非正交基 ,我们该如何度量其所构成的体积?

由高等代数知识可知, 可以被正交阵 对角化

为对角阵(一组正交基);又由上面的讨论,我们知道正交阵不改变体积,于是

所以,对于一般基而言,其体积同样等于其行列式的绝对值。


友情提示:

  • 为正交阵,则



  

相关话题

  怎么证明分块矩阵(A B -B A)行列式非负,我感觉这是对的 但又说不清为什么? 
  一个矩阵的逆矩阵是唯一的吗? 
  四边不等的一般四边形如何求面积? 
  任给正整数N,都能在平面上画出一个圆,使圆内整点个数为N吗? 
  一个三阶行列式,所有的元素要么是 1,要么是 -1,则它的值可能是多少? 
  如何理解矩阵特征值? 
  设A,B,C均为n阶半正定实对称矩阵,使得ABC是对称阵.证明:ABC也是半正定阵.请问该怎么证明? 
  红绿蓝三色是(唯一的)正交基吗? 
  为什么圆锥曲线的二级结论那么多而其他章节的就相对要少? 
  请问如何推导矢积的行列式表达呢? 

前一个讨论
为何可逆上三角形矩阵的逆矩阵也是上三角形矩阵?
下一个讨论
圆的半径为 1,求其内接正五边形边长?





© 2025-07-02 - tinynew.org. All Rights Reserved.
© 2025-07-02 - tinynew.org. 保留所有权利