百科问答小站 logo
百科问答小站 font logo



线性映射为什么那么重要? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

依照认识顺序从简单到复杂的逻辑,线性的规律是人类最早认识且把握的。关于这一点就不细说了。

代数角度

从代数的角度讲,关于群同态

这是最简单的“线性映射”,由群论的知识有,

此为第一同构定理。可以看出,同态有助于我们对于群 结构的理解。当我们考虑环、模、域时,照样有同态的定义:

而我们平时所说的线性映射,实际上指的是在模之间的同态。同群的第一同构定理一样,在环、模、域也有类似的定理帮助我们理解代数结构。

几何角度

从几何的角度看,线性映射很“天然”。在欧式空间中,伸缩、旋转、反射都是线性映射,而这些变换对于人类最为直观(再算上平移,就是仿射变换)。如果说平移保持的是点与点之间相对的距离不变(等距变换),那么对于线性变换(满秩的线性映射)就是保持线性性质不变。

另外线性变换最大的优点是:只需知道有限个点处的取值,就可以求出来所有点的值。这有限个点就是基底。这种一叶知秋的感觉呢,比非线性的好多了。

微分方程角度

我们可以将线性方程写成求线性算子的零点的形式。

从实际操作的角度,也就线性方程比较友好。非线性的方程,人类确实所知甚少。随手写一个非线性 PDE,有没有解都很难判断。但是线性微分方程就非常透明,没有非线性那样令人抓狂。顺便提一下 ODE 中一个重要的线性映射:

就是特征方程。这是一个将函数方程映射为代数方程的线性映射。第一次学到这东西,我觉得是个人都会感到惊讶吧。

泛函分析中线性映射是处在核心的地位,泛函那真是无所不包了。我曾以为自己很了解线性映射,自从学了泛函,学到我都已经不认识线性映射了……




  

相关话题

  线性空间的对偶空间和优化里的拉格朗日对偶有什么关系? 
  为什么nn的较大问题是会陷入局部最优时,不选用凸函数作为激活函数? 
  极小多项式有什么几何含义,怎么形象的理解这个概念? 
  你喜欢数学吗,为什么? 
  用向量方法证明海伦公式划线的地方没明白⊙ω⊙?求详细过程!? 
  有没有简单的方法[这里指高中(非竞赛)水平,初等计算复杂程度不计]证明这个不等式(详细见下图)? 
  小偷能逃出无数个警察的包围圈吗? 
  每秒 30 米有多快呢? 
  偏序性质的有向无环图的最大独立集如何求解? 
  下面这个数列极限如何求出来呢? 

前一个讨论
请问是质数更多还是合数更多还是一样多?
下一个讨论
有哪些任意阶导数的零点都相同的函数?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利