百科问答小站 logo
百科问答小站 font logo



线性映射为什么那么重要? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

依照认识顺序从简单到复杂的逻辑,线性的规律是人类最早认识且把握的。关于这一点就不细说了。

代数角度

从代数的角度讲,关于群同态

这是最简单的“线性映射”,由群论的知识有,

此为第一同构定理。可以看出,同态有助于我们对于群 结构的理解。当我们考虑环、模、域时,照样有同态的定义:

而我们平时所说的线性映射,实际上指的是在模之间的同态。同群的第一同构定理一样,在环、模、域也有类似的定理帮助我们理解代数结构。

几何角度

从几何的角度看,线性映射很“天然”。在欧式空间中,伸缩、旋转、反射都是线性映射,而这些变换对于人类最为直观(再算上平移,就是仿射变换)。如果说平移保持的是点与点之间相对的距离不变(等距变换),那么对于线性变换(满秩的线性映射)就是保持线性性质不变。

另外线性变换最大的优点是:只需知道有限个点处的取值,就可以求出来所有点的值。这有限个点就是基底。这种一叶知秋的感觉呢,比非线性的好多了。

微分方程角度

我们可以将线性方程写成求线性算子的零点的形式。

从实际操作的角度,也就线性方程比较友好。非线性的方程,人类确实所知甚少。随手写一个非线性 PDE,有没有解都很难判断。但是线性微分方程就非常透明,没有非线性那样令人抓狂。顺便提一下 ODE 中一个重要的线性映射:

就是特征方程。这是一个将函数方程映射为代数方程的线性映射。第一次学到这东西,我觉得是个人都会感到惊讶吧。

泛函分析中线性映射是处在核心的地位,泛函那真是无所不包了。我曾以为自己很了解线性映射,自从学了泛函,学到我都已经不认识线性映射了……




  

相关话题

  有没有简单的方法[这里指高中(非竞赛)水平,初等计算复杂程度不计]证明这个不等式(详细见下图)? 
  怎么巧记施密特正交公式?如图。? 
  有哪些看似荒谬的事,却有着合理的数学解释? 
  各类科研领域中哪些公式,原理或定律的推出,用到了有趣的思维方式? 
  如何评价第36届中国数学奥林匹克? 
  对于多元线性回归,如何证明任一自变量的系数等同于忽略其他变量后一元线性回归的系数? 
  数列 {1, 1, -1, -1, 1, 1, -1, -1, ...} 的通项公式是多少呢? 
  如何处理这类三个连乘的积分呢? 
  “喝醉的酒鬼总能找到回家的路, 喝醉的小鸟则可能永远也回不了家”具体是什么定理? 
  叶戈罗夫定理的逆定理该怎么证明? 

前一个讨论
请问是质数更多还是合数更多还是一样多?
下一个讨论
有哪些任意阶导数的零点都相同的函数?





© 2025-05-14 - tinynew.org. All Rights Reserved.
© 2025-05-14 - tinynew.org. 保留所有权利