百科问答小站 logo
百科问答小站 font logo



请问如何推导矢积的行列式表达呢? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


设两向量在标准正交基下坐标为:

α = xi + yj + zk

β = ui + vj + wk

那么

α x β = (xi + yj + zk ) ⊗ (ui + vj + wk)

根据外积的性质:

i i = 0j j = 0k k = 0

ij = kj k = ik i = j

以及外积的反交换律性质,将上述叉乘式括号打开,按外积分配律化简得:

α β = (zv - yw )i - (xw - zu)j + (xv - yu)k

最后这些式子很容易化为行列式形式(按第一行展开的拉普拉斯定理):

顺便把二重积分中雅可比行列式的证明列出来:




  

相关话题

  这个极限题如何解决? 
  为什么条件收敛的级数重排后,即使收敛,也不一定收敛于原来的级数和? 
  一道极值点偏移如何证明? 
  一个矩阵的逆矩阵是唯一的吗? 
  这个级数是怎么得到的? 
  线性映射为什么那么重要? 
  如何利用积分第二中值定理和柯西收敛准则证明Abel判别法? 
  如何计算下面这个级数? 
  lnx 的 0.5 阶导数是什么? 
  若向量组A可以由向量组B线性表示,为何r(A)<=r(B)? 

前一个讨论
求极限过程(如下图)?
下一个讨论
如何计算 sqrt(tan x) 在 0 到 π/2 的定积分?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利