百科问答小站 logo
百科问答小站 font logo



n - r = 基础解系的个数,这是为什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

所以该齐次线性方程组的解空间为

也就是说,解空间是系数矩阵行向量张成空间的正交补空间,即

由维数公式


我觉得这个观点很直观,可能我写得太简洁了,我举个例子说明吧。

解方程组:

我们把矩阵视为三个行向量的排列,

原方程组的解空间 是由三个集合的交集所决定的:

我们现在去分析每个 的几何意义是什么。

,内积为零,即两个向量正交。也就是说, 表示的是 中与 垂直的空间(正交补空间,可以证明这是一个线性空间),我们记为 ,故有

在解析几何中,

就表示法向量为 且过原点的平面。单个向量生成的空间维数是 ,平面(正交补空间)的维数是 ,两者之和恰好就是 的维数。即,

这个式子对于高维空间也成立。

如上图,红色向量是 ,红色平面是与之垂直的线性空间,其他向量与平面以此类推。

注意到 (红向量加蓝向量得到绿向量),这三个向量共面——线性相关。这三个向量实际上生成的空间是黄色的平面,它的维数是 ,等价于系数矩阵的秩等于 .

也就是说,我们最后要求的是与平面 正交的空间——刚好就是 轴,正是图片中三个平面相交的直线,即方程组的解 .


我们最后总结一下,

所以该齐次线性方程组的解空间为

也就是说,解空间是系数矩阵行向量张成空间的正交补空间,即

由维数公式 即可知,解空间的维数等于




  

相关话题

  如果高育良不看《万历十五年》而是《高等数学》或者《线性代数》,那赵瑞龙会怎样拿下他? 
  矩阵论什么好的书籍推荐? 
  r个线性无关n维向量r<n的所有r阶子的平方和等于这r个向量张成平行体的体积的平方吗?怎么证明? 
  为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 
  能否用矩阵的秩来证明? 
  高等代数中线性变换的核的基怎么求? 
  为什么行列式恰好能表示体积? 
  这道线代题该怎么做? 
  怎样普适地求此特殊非线性矩阵方程的解? 
  这个矩阵的秩如何证明? 

前一个讨论
如何证明下面的级数恒等式?
下一个讨论
为什么做功可以和力向量与位移向量的特定内积得出?





© 2025-06-05 - tinynew.org. All Rights Reserved.
© 2025-06-05 - tinynew.org. 保留所有权利