百科问答小站 logo
百科问答小站 font logo



如何不借助特征值相关的理论证明下面的命题? 第1页

  

user avatar   wang-jin-yi-4 网友的相关建议: 
      

好漂亮的结论……先说明一下,我还没认真学线性代数,只是瞎扯几句。把A看成 上的线性变换,那么由条件 ,象 是 的子空间,其中的元素都是A的不动点。取这个子空间的一组基 ;另一方面核 也是 的子空间,且 。再取 的一组基以扩展成 的一组基 ,那么A在这组基底下的矩阵就是 (k个1,n-k个0),也就是说A与这个对角矩阵相似。由于迹和秩都是相似不变量(这个不算用到特征值吧?),它们都等于k。这样行吗,我觉得挺直观的。




  

相关话题

  多项式方程互异根的数目利用矩阵结式怎么求?利用最大公因式的次数怎么确定?望举例说明!感谢各位大佬!? 
  这道线代题该怎么做? 
  是否存在多项式 f(x)、g(x)、m(y)、n(y),使得 (xy)²+xy+1=fm+gn? 
  如何理解主成分分析中的协方差矩阵的特征值的几何含义? 
  作为维数公式的黎曼-洛赫定理在数学上的重要性体现在什么地方? 
  如果你要向一位学过初级的抽象代数的本科生推销数学工具「正合序列」,你会如何介绍它? 
  可以有如图这样弯曲的向量A吗? 
  如何通俗地解释陶哲轩等人简化矩阵特征向量求解的方法? 
  设A是一个3阶行列式,aij=1或-1,1≤i,j≤3,如何证明det(A)≤4? 
  对任意多项式P_m(x),是否一定存在Qn(x),使P_m(x)Q_n(x)=Ax^(m+n)+B? 

前一个讨论
如何思考这道定积分难题?
下一个讨论
如果我自己构思了一款游戏,可以通过什么途径实现这个想法?





© 2025-06-27 - tinynew.org. All Rights Reserved.
© 2025-06-27 - tinynew.org. 保留所有权利