百科问答小站 logo
百科问答小站 font logo



如何不借助特征值相关的理论证明下面的命题? 第1页

  

user avatar   wang-jin-yi-4 网友的相关建议: 
      

好漂亮的结论……先说明一下,我还没认真学线性代数,只是瞎扯几句。把A看成 上的线性变换,那么由条件 ,象 是 的子空间,其中的元素都是A的不动点。取这个子空间的一组基 ;另一方面核 也是 的子空间,且 。再取 的一组基以扩展成 的一组基 ,那么A在这组基底下的矩阵就是 (k个1,n-k个0),也就是说A与这个对角矩阵相似。由于迹和秩都是相似不变量(这个不算用到特征值吧?),它们都等于k。这样行吗,我觉得挺直观的。




  

相关话题

  为什么矩阵内积的定义包含一个迹运算? 
  二次型的惯性定理中「惯性」是什么意思? 
  可交换矩阵的求法有几种? 
  哪些线性代数(指一般意义上的本科一年级的课程)的难题可以用李群李代数的知识简便、优雅地做出来? 
  一堆n维空间的由m个点组成的点集,m大于n,我们只知道它们之间的距离,能否判断所在空间的维数? 
  请问如何推导矢积的行列式表达呢? 
  A的秩=r(A),为什么齐次线性方程组的解由n-r(A)个线性无关的向量构成? 
  如何理解命题「矩阵可对角化等价于其所有特征值的代数重数等于几何重数」? 
  对任意多项式P_m(x),是否一定存在Qn(x),使P_m(x)Q_n(x)=Ax^(m+n)+B? 
  高考完的暑假如何自学大学数学? 

前一个讨论
如何思考这道定积分难题?
下一个讨论
如果我自己构思了一款游戏,可以通过什么途径实现这个想法?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利