百科问答小站 logo
百科问答小站 font logo



对于数学分析、微分方程、复变、代数学、拓扑学等数学课程你都见过哪些很有自己一派风格而不落俗套的教材? 第1页

  

user avatar   banach-50 网友的相关建议: 
      

分析的话,amann的三册analysis基本上涵盖了题主所说所有内容的最基础部分。

微分方程的话,个人感觉Arnold的书比较有趣,有很多直观解释。

复分析有一本《可视化方法》比较有趣,多图多几何直观,作为入门的启蒙读物挺不错。

拓扑学那边,我的阅读经历中能脱颖而出的当属GTM82,R.bott&L.tu的代数拓扑中微分形式。我啃hatcher的时候反复去世,而bott的书深度不低于hatcher,却能深入浅出,本科生也能轻松上手

(作为一个喜欢具体形象的东西的人,我代数看的太少。有些教材也是道听途说,所以这一段参考价值可能不大)代数方面我能想到的是paolo aluffi的algebra:chapter 0(GSM104),以范畴的语言为起点从群环域模讲起,据说后面还覆盖到了spectral sequence,不过我没怎么读过




  

相关话题

  请问一下如何求解下面这个积分的值? 
  这个级数应该怎么计算呢?求解答? 
  卓里奇的《数学分析》怎么样? 
  逃离丧尸包围的游戏,你能否逃生? 
  这个定积分极限如何计算? 
  为什么经济学专业要学拓扑学? 
  有理数1和0.999…循环相等吗? 
  为什么高中不直接开设高等数学、线性代数、概率统计这几门课呢? 
  底下那步怎么转化的啊 是忽略了吗? 
  为什么要引入弧度制? 

前一个讨论
拓扑学能解决哪些分析学无法解决的问题?
下一个讨论
参加 2021 年丘成桐大学生数学竞赛是什么体验?如何评价今年的竞赛?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利