百科问答小站 logo
百科问答小站 font logo



二重积分经过变量变换后,为什么原有闭区域的边界点也是新区域的边界点? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

设 是一同胚, 为开域,那么 将内点映为内点,边界点映为边界点.

证:反证法.

  • 若边界点 ,但 是内点,存在开球 ,则 ,故 是 含在 内的开邻域,于是 是 的内点,这与题设矛盾;
  • 若内点 ,但 是边界点,由于 也是同胚,则由上一种情况可知, 也是边界点,矛盾.


而一般的积分变换 ,满足Jacobi 行列式非零,等价于积分变换 是满秩的,即 是一个光滑浸没(Submersion),而光滑浸没是局部微分同胚( Local diffeomorphism).




  

相关话题

  有没有添加一类特殊函数扩充初等函数的方式使得对该集合积分形成封闭域? 
  请问这个概念题目有大佬能讲解一下吗? 
  如何确定该双变量函数的所有间断点? 
  这个含正弦函数的和式极限怎么求? 
  是否任一无穷集合都能分成两个等势的不交集合之并? 
  如何简单明了证明负负得正? 
  这个9题不等式右边怎么证明呢? 
  这个极限怎么写? 
  为什么会对微积分有种「这个思路不是严格推导出来的,而有一点人为规定的成分」的感觉? 
  Ln(-3-3i)等于多少? 

前一个讨论
为什么行阶梯矩阵是这样的呢?
下一个讨论
长的帅的男生一般长情吗?





© 2025-06-05 - tinynew.org. All Rights Reserved.
© 2025-06-05 - tinynew.org. 保留所有权利