百科问答小站 logo
百科问答小站 font logo



如何将x+y+z=0,x^2+y^2+z^2=1化为参数方程? 第1页

  

user avatar   dylan-dong-233 网友的相关建议: 
      

看到别的回答已经写出结果了,在这里提一种不一样的想法。


在平面 上,取一组正交的基底 , ,再将其单位化得 , 。

此时,半径为 的圆上的任一点都可以用 表示,其中 为参数。

对比每一个分量得 ,其中 为参数。


其实如果学过线代的话,也可以先找到一个正交变换,将平面 变为 ,此时球面的方程仍为 ,这样就容易写出变换后的参数方程。再将结果逆回去,就可以找到原来的坐标系中的参数方程。

当然,这种做法没有上面那么好操作(我也懒得写了)。




  

相关话题

  请问你见过的最强的公式是什么? 
  f'(x)=f(f(x))这类迭代常微分方程是否有相应的方法求它们的性质? 
  求救,这微分方程怎么解? 
  如何判别一个方程所表征的曲线是否封闭? 
  如何证明这两个微分方程具有相同的轨线? 
  常微分方程解对初值的连续依赖性,书上都是定理证明,能否举个最简的方程来说明下,它的解是怎么依赖初值的? 
  怎样求空间中直线绕轴旋转的方程? 
  为什么 n 阶线性微分方程的通解由 n 个线性无关的特解线性组合构成,这与线性方程组有关系吗? 
  学了一段时间微分方程了,感觉就只是在学类型学方法,然后根本就不晓得这个是干嘛的,有什么用? 
  如何计算从喷头中喷出水雾落地后的分布情况(包括洒水半径、水量等)? 

前一个讨论
有什么事情是成为一个耳机发烧友之后才了解的?
下一个讨论
在中字头国企建筑施工单位工作,想要转行干程序员?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利