百科问答小站 logo
百科问答小站 font logo



实变函数鲁津定理的疑问? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。


我们先看一下相对连续的定义:

设 X 是 ℝ 的子集,设 f :X → ℝ 是函数. x₀∈ X,则当我们说 f 在 x₀ 处连续,当且仅当有

在 x₀ 的连续性,一般来说需要强调在什么“环境”中,也就是探讨:该点处于什么样的集合中。而对于我们通常意义下的连续性,x₀∈ ℝ 可以忽略不写。

所以,利用这个定义,我们甚至可以定义在有理数集上的连续函数。一个平凡的推论就是:

设X ⊆ Y,函数 f 在 Y 上连续,则必在 X 上连续。但反之不成立。

就比如说 Dirichlet 函数,它在有理数集上是连续的,但在实数集上是处处不连续的。


回到问题。

如果我们去掉实数中的有理点,则 Dirichlet 函数在无理数集中连续。




  

相关话题

  数学中对于直线、平面的定义是什么? 
  直线可不可以看做是半径无限大的圆? 
  关于这个函数项级数,有没有一些研究成果? 
  多元函数有单调性吗? 
  数学2分,如何自救? 
  俄罗斯的数学教育为什么那么强大? 
  怎样利用格理论,也就是 minkowski 基本定理来证明拉格朗日四平方和定理以及费马平方和定理? 
  线性映射为什么那么重要? 
  狼想吃掉羊,狮子要保护羊,他能做到吗? 
  超理论坛是个怎样的论坛? 

前一个讨论
有什么途径可以补齐自己数学知识的短板?
下一个讨论
什么是上极限?





© 2025-05-06 - tinynew.org. All Rights Reserved.
© 2025-05-06 - tinynew.org. 保留所有权利