抛砖引玉一下
考虑如下问题:对于二维可定向闭曲面M,亏格为g,那么M上是否存在一个连续的、没有零点、奇点的向量场?
如果g=1,M是环面,很显然是存在的,考虑在lattice上取一个常向量场,作完商空间后自然是整个环面上的连续非零向量场。
但是对于球面或者多环面(g>1),是否依然成立呢?答案是否定的。微分拓扑里面的hopf-poincare定理告诉我们,对于一个n维流形上的向量场,所有局部指标加起来等于拓扑指标,也即欧拉示性数χ(M)。当向量场没有零点或奇点时,局部向量场指标处处为0,那么必须只能χ(M)为0了,而对于二维可定向闭曲面,χ(M)=2-2g,g不为1时都不为0,自然也找不到满足题目要求的向量场。
表面看上去,一个几何体上的连续向量场似乎是和分析更紧密相关的东西,最后的答案却只和某个拓扑不变量有关,不免令人大跌眼镜。