百科问答小站 logo
百科问答小站 font logo



如何构造一个初值,使得这个数列是发散的? 第1页

  

user avatar   emoji-29-79 网友的相关建议: 
      

只考虑 。

我仔细算了一下, 时候,可以找到你需要的发散的复初值的例子。 的时候,没有这样的例子。 ,我还不清楚,计算量有点大。

首先我们把迭代对应的矩阵 写出来,

这里,把 看成是列向量,左乘 ,就得到了 。我们希望在 的时候,验证 的无穷到无穷范数一致有界。为此,我们利用傅里叶分析的方法。令 ,定义 。

则, 是 的 重卷积在 处的取值。所以,利用Fourier逆变换公式,

令 。对于 , 。并且, 。针对 ,我们有如下估计:

引理:假设 , ,存在 和 ,。

从而, 。(可以用定积分估计,把 想成是被积分变量 ,可以大致化成一个高斯型积分。)

引理的证明:定理的证明就是一串渐近估计,最后转换成高斯积分的Fourier变换。首先,

可以看出来,对于 ,存在 , 。所以,对于 ,

所以, 记

注意对于 ,由(1)式,

所以,

综上,引理得证。


对于 ,注意 ,取 使得 , 即可。如果你希望 是个实数值的,我还不知道有没有例子。

下面是原回答。


好像 时,你给出的 就可以。

考虑 。则,可以归纳的证明 。而 。所以, , 且 时,上式严格大于 。必然趋于无穷。通过讨论 ,大致能做到 的情况。接下来比较困难了。




  

相关话题

  如何证明R^2上的不可数集至少在一点附近局部不可数啊? 
  “可分度量空间”的名字是怎么来的? 
  奶茶咖啡等饮料全换成纸吸管到底能降低多少污染? 
  数学的符号系统有没有缺陷? 
  伟大的数学家是如何培养的呢? 
  数学总是令我困惑,为什么可以这么做? 
  如何看待《中国学生所谓的数学牛逼》这篇文章? 
  教授留的思考题,请问这个积分怎么求? 
  既然负数开平方可以拓展出一个复数系,那 1/0 也可以拓展出新的数系吗? 
  素数的 Willans 公式是否正确? 

前一个讨论
老人说现实中唯物实质基本上就是唯钱(财),以钱权论高低,你觉得呢?
下一个讨论
随便在一个直角坐标系中点100个点(非直线)是否都能计算出一个解析式使所有点都落在上面?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利