百科问答小站 logo
百科问答小站 font logo



常微分方程解对初值的连续依赖性,书上都是定理证明,能否举个最简的方程来说明下,它的解是怎么依赖初值的? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

从几何的角度,一个向量场 诱导一条积分曲线 ,满足:

这在一般流形 的局部上是成立的,但是我们不妨仅在欧式空间 中讨论。

这就好比有一个平稳的水流(几乎听不到水流的声响),我们将水流表面的流速视为向量场,这时将一艘纸船放在水流的某一点(初始位置),不需要外力介入,小船自己就会划出一条轨迹(积分曲线)。如果我在放第二艘纸船的时候,离第一艘纸船的初始位置很近,直觉上,这两艘小船的轨迹在某一时间内、某一邻域内也极其接近——这就是连续依赖初始位置的简单说法。如果,是一个不稳定的水流,比如水流遇到乱石的阻挡、扰动,或者是瀑布的飞溅,会产生不可控的局面,此时会破坏这种连续性。

举个最简单的例子:

也就是说,从原点开始,给予质点初速度 ,于是接下来质点将会沿一条直线保持这个速度运动下去,质点的轨迹是 ;如果换一个初始位置 ,那么解这个微分方程得到轨线为 ,从图像上看,这两条直线之间彼此非常靠近。




  

相关话题

  我今年16岁,昨天花了2个小时用梅涅劳斯逆定理证明了帕斯卡定理,那我在数学方面有天赋吗? 
  阿贝尔变换强大在哪里? 
  这张算数入门图(一只兔子加一只兔子)里的题在算什么? 
  为什么有的数学定理看起来很显然,证明起来却很复杂? 
  是否存在不可数个实数,其中任意有限多个在有理数上线性无关? 
  如何用多种方法(几何解释除外)来证明此不等式? 
  有没有这样一条公理,如果一旦不成立,所有学术体系(如物理学、化学、生物学)都会崩溃? 
  如何评价安徽大学 2019~2020 第一学期高等数学期末考试? 
  高等数学中 ϵ 和 ε 哪种字体更常用于刻画极限? 
  怎么理解外微分式的连续性? 

前一个讨论
如图,这个二元函数的界怎么估算?
下一个讨论
“如果你是一张卷子,我希望我是那份标准答案”是什么意思?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利