百科问答小站 logo
百科问答小站 font logo



如图,这个二元函数的界怎么估算? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

令 , ,那么 , 。我们知道 在正方形 的四顶点函数值之和为0,想证明在正方形上 。由Lagrange中值定理有
(注意上面涉及的线段都在正方形内)。四式相加得

因此 。

编辑:这个方法高维推广会遇到困难,因为,比如三维的情况,这样换元就会把正方体变成正八面体,就无法套用中值定理了。还需要更好的方法。


user avatar   liu-yang-zhou-23 网友的相关建议: 
      

不妨设

设线段(弧长参数)

满足

考虑一元函数 ,其导数为

于是由 中值定理

将四个式子叠加

将这两个估计代入

则取一列 列收敛到点 ,由函数的连续性、极限的保号性可知上面的不等式依然成立。


这个证明得到的上界介于

以后有机会再改进改进吧……

所以将这个结论推广到多元函数,函数最大绝对值至少由上界

控制,其中 表示 维闭单位立方体内一点,到各个顶点距离。这个最大值在项点处取得,证略。

利用 求和得到上式右边的粗略估计:




  

相关话题

  这个积分具体怎么算呢? 
  关于Gamma函数的极限? 
  一个空间中勾股定理不存在,而变成了 c^4=a^4+b^4,甚至有更高的指数,那么这是一种什么空间? 
  龙格库塔为何一般只用四阶? 
  伟大的数学家是如何培养的呢? 
  请问应如何证明? 
  有哪些式子行列式答案等于520? 
  阿里数学竞赛到底难不难?高考142分能不能去试试看? 
  数学分析中,关于某个变量一致是什么意思? 
  连分式近似怎么操作? 

前一个讨论
这个数列问题困扰我一段时间,大佬有没有好的方法呢?
下一个讨论
常微分方程解对初值的连续依赖性,书上都是定理证明,能否举个最简的方程来说明下,它的解是怎么依赖初值的?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利