百科问答小站 logo
百科问答小站 font logo



交换环的所有零因子和 0 组成的集合是一个理想吗? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

反例:

令交换环 ,设平凡与非平凡零因子所构成的集合为

然而


推而广之, 时( 为质数),皆为反例. 沿用上面记号

以剩余系为代表元按由小到大排列,而

而在 中介于 到 的元素只有 的某些倍数,但是很显然 ,所以最后只有


事实上,上面证明条件还可以更宽松一点,只需要 即可,如此一来由裴蜀等式:

而 ,否则存在与相伴的 任意零因子 ,即

而这与零因子非零矛盾.

如此一来,只有 的零因子才可以满足题目,实际上此时有

显然后者是一主理想.




  

相关话题

  求问学抽象代数的大佬,如果f(x)的次数为n,那么分裂域E/F的次数为什么是n!,分裂域的次数是什么? 
  交换环的所有零因子和 0 组成的集合是一个理想吗? 
  被人问,数学上为什么减去一个负数等于加它的相反数(这种规定从何而来)? 
  有理数域加减乘除都是封闭的,那为什么部分无理数可以表示为有理数加减后的无穷级数呢? 
  如何从数学角度证明魔方复原存在必可解策略? 
  任何Abel群都能在其上赋予乘法,使其变成含幺环吗? 
  请问这个抽象代数题怎么证明? 
  有没有休闲级别、能读懂的讲「群论」的书籍? 
  数字上加一横是什么意思? 
  在整环中,若两个非零元存在最大公约数,则它们是否一定也存在最小公倍数? 

前一个讨论
为什么九宫格外面一圈数字顺时针或逆时针排列组成的八位数都能被 11 整除?
下一个讨论
一个半径为1的圆周上有三个点,求三个点构成的图形的面积的期望值?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利