百科问答小站 logo
百科问答小站 font logo



交换环的所有零因子和 0 组成的集合是一个理想吗? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

反例:

令交换环 ,设平凡与非平凡零因子所构成的集合为

然而


推而广之, 时( 为质数),皆为反例. 沿用上面记号

以剩余系为代表元按由小到大排列,而

而在 中介于 到 的元素只有 的某些倍数,但是很显然 ,所以最后只有


事实上,上面证明条件还可以更宽松一点,只需要 即可,如此一来由裴蜀等式:

而 ,否则存在与相伴的 任意零因子 ,即

而这与零因子非零矛盾.

如此一来,只有 的零因子才可以满足题目,实际上此时有

显然后者是一主理想.




  

相关话题

  为什么正规子群在环里的对应概念叫理想,而不叫正规子环呢? 
  有理数域加减乘除都是封闭的,那为什么部分无理数可以表示为有理数加减后的无穷级数呢? 
  (动力系统 + 拓扑学 + 抽象代数)和(泛函分析 + 实变函数 + 复分析和解析几何)有哪些联系? 
  如何正确理解群论中的同态基本定理? 
  对于抽象代数中的这个互素后的怎么证明比较合适? 
  平面上两条 n 次曲线相交,交点的最大个数是否为 n²? 
  请问陪集、左陪集、商群、正规子群该如何理解? 
  请问这个抽象代数题怎么证明? 
  设群G有一个指数为4的正规子群,则G也有一个指数为2的正规子群。这个要怎么证明呢? 
  如何理解群表现? 

前一个讨论
为什么九宫格外面一圈数字顺时针或逆时针排列组成的八位数都能被 11 整除?
下一个讨论
一个半径为1的圆周上有三个点,求三个点构成的图形的面积的期望值?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利