百科问答小站 logo
百科问答小站 font logo



为什么正规子群在环里的对应概念叫理想,而不叫正规子环呢? 第1页

  

user avatar   kokojian-sai-sai 网友的相关建议: 
      

谢邀。

这与代数数论有关。简单来说就是,当年库默尔研究费马大定理的时候发现,代数整数环并非都是唯一因子分解整环。为了解决这个问题,他引入了一个叫“理想数”的概念——大概的意思就是,虽然一个数可以以不同的方式写成素数的乘积,但如果把一些素数形式地看成一些并不存在的数的乘积,那唯一因子分解性又重新得到了保证。在这样的技巧下,库默尔完成了费马大定理对n为100以内的绝大多数情况的证明。后来,戴德金发现,库默尔引入的“理想数”不是别的,正是环R的使得R/I还是个环的子环I,于是沿用之前的称呼,依旧称I为R的理想了。




  

相关话题

  如何简要解释为什么五次多项式方程没有根式解? 
  有限群的群行列式因式分解后,各因式的次数是否与重数相等? 
  (动力系统 + 拓扑学 + 抽象代数)和(泛函分析 + 实变函数 + 复分析和解析几何)有哪些联系? 
  请问费马大定理写成方程形式是否可以证明? 
  是否存在一个比复数更大的数域,使得任意五次方程都有根式解? 
  如何把微信群/QQ群构造成一个阿贝尔群? 
  如何证明实数域是最大的有序阿基米德域?(这是“完备性”的本质吗)? 
  交换环的所有零因子和 0 组成的集合是一个理想吗? 
  无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 
  如果你要向一位学过初级的抽象代数的本科生推销数学工具「正合序列」,你会如何介绍它? 

前一个讨论
《火影忍者》有多少手势?
下一个讨论
怎么才能让自己暗恋的人也喜欢自己那呢?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利