百科问答小站 logo
百科问答小站 font logo



为什么正规子群在环里的对应概念叫理想,而不叫正规子环呢? 第1页

  

user avatar   kokojian-sai-sai 网友的相关建议: 
      

谢邀。

这与代数数论有关。简单来说就是,当年库默尔研究费马大定理的时候发现,代数整数环并非都是唯一因子分解整环。为了解决这个问题,他引入了一个叫“理想数”的概念——大概的意思就是,虽然一个数可以以不同的方式写成素数的乘积,但如果把一些素数形式地看成一些并不存在的数的乘积,那唯一因子分解性又重新得到了保证。在这样的技巧下,库默尔完成了费马大定理对n为100以内的绝大多数情况的证明。后来,戴德金发现,库默尔引入的“理想数”不是别的,正是环R的使得R/I还是个环的子环I,于是沿用之前的称呼,依旧称I为R的理想了。




  

相关话题

  若K是一个数域。a+bi∈K,(a≠0,b≠0)。请问a和b一定属于K吗? 
  无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 
  能不能定义一个数 I,与 0 的乘积等于 1? 
  请问费马大定理写成方程形式是否可以证明? 
  关于整矩阵的一道题怎么解? 
  P是任意数域,如何证明P^n*n对于普通加法和乘法构成的环没有非平凡理想? 
  P是任意数域,如何证明P^n*n对于普通加法和乘法构成的环没有非平凡理想? 
  为何中学阶段不系统讲授一元三次四次方程?总感觉高中数学的很多内容在初中数学上没有根基,完全是空降的? 
  如果你要向一位学过初级的抽象代数的本科生推销数学工具「正合序列」,你会如何介绍它? 
  这个多项式问题从何入手进行求解? 

前一个讨论
《火影忍者》有多少手势?
下一个讨论
怎么才能让自己暗恋的人也喜欢自己那呢?





© 2025-05-16 - tinynew.org. All Rights Reserved.
© 2025-05-16 - tinynew.org. 保留所有权利