百科问答小站 logo
百科问答小站 font logo



对于数学分析、微分方程、复变、代数学、拓扑学等数学课程你都见过哪些很有自己一派风格而不落俗套的教材? 第1页

  

user avatar   banach-50 网友的相关建议: 
      

分析的话,amann的三册analysis基本上涵盖了题主所说所有内容的最基础部分。

微分方程的话,个人感觉Arnold的书比较有趣,有很多直观解释。

复分析有一本《可视化方法》比较有趣,多图多几何直观,作为入门的启蒙读物挺不错。

拓扑学那边,我的阅读经历中能脱颖而出的当属GTM82,R.bott&L.tu的代数拓扑中微分形式。我啃hatcher的时候反复去世,而bott的书深度不低于hatcher,却能深入浅出,本科生也能轻松上手

(作为一个喜欢具体形象的东西的人,我代数看的太少。有些教材也是道听途说,所以这一段参考价值可能不大)代数方面我能想到的是paolo aluffi的algebra:chapter 0(GSM104),以范畴的语言为起点从群环域模讲起,据说后面还覆盖到了spectral sequence,不过我没怎么读过




  

相关话题

  实变函数鲁津定理的疑问? 
  是否存在一个复解析函数f(z),使得对于正整数n,f(n)就是第n个质数? 
  实系数多项式之所有根为实数,如何证明其相应 n 阶导数之所有根为实数? 
  从985大学退学去俄罗斯读数学专业可行吗? 
  这个类似卷积的函数极限怎么证明? 
  为什么房价的涨幅不可能长期超过“GDP涨幅+通货膨胀”? 
  有理数域加减乘除都是封闭的,那为什么部分无理数可以表示为有理数加减后的无穷级数呢? 
  对于所有的无穷小,能否把它们趋于0的速度定义为一个数,使得趋于0速度较小的一定是较低阶的无穷小? 
  本人高二理科生,欲修拓扑学,求推荐入门书籍。? 
  如何求此类极限? 

前一个讨论
拓扑学能解决哪些分析学无法解决的问题?
下一个讨论
参加 2021 年丘成桐大学生数学竞赛是什么体验?如何评价今年的竞赛?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利