百科问答小站 logo
百科问答小站 font logo



平面上两条 n 次曲线相交,交点的最大个数是否为 n²? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

直觉上认识,n条互相平行的直线是n次曲线的一种(尽管看起来是退化的情形)。两个(n条互相平行的直线)相互交叉就是n^2个交点。然后让n次曲线连续地变动,交点的个数也应该是连续变动的,但交点个数是整数,所以就总是n^2. (这里要恰当地定义好交点的重数)。这是证明Bezout定理的其中一个粗糙的思路。


user avatar   fattyymusic 网友的相关建议: 
      

是。代数几何(Algebraic geometry,数学的一个分支,不是“代数+几何”的合称)里有一个贝祖定理(Bézout's theorem)说的就是这个问题(不是数论里同名的那个定理)。

通俗点说可以这么理解(非完整证明,严格的表述及推导请看代数几何教材): 次平面曲线的方程就是一个二元 次多项式 ,同理,另一个 次曲线的方程是一个二元 次多项式 。它们联立求交点坐标,可以转化为求结式 (Resultant,不是留数,记号类似而已) 的解。根据代数基本定理,最高次为 的多项式方程最多有 个实根(若算上复数与重根,则一定有这么多),这意味着两条曲线最多可有 个实交点(只保证存在,不保证可解), 时即为 。

例子如下图,两条三次曲线最多有九个交点,二次和四次曲线最多有八个交点。

一个较硬核的数学描述参见:




  

相关话题

  能否把数学竞赛变得更有观赏性? 
  求问学抽象代数的大佬,如果f(x)的次数为n,那么分裂域E/F的次数为什么是n!,分裂域的次数是什么? 
  如何证明圆上若干点构成的多边形最大面积在正多边形时取到? 
  如何看待知乎用户李归农嘲讽数学家华罗庚被驳斥无回应? 
  有哪些不同的物体,他们沿所有轴的转动惯量都相同? 
  高中毕业半年了,还是不会解方程。刚刚还去抖音搜了一下解方程,看了几个视频还是学不会?是不是脑子有问题? 
  有理数旁边是无理数还是有理数,无理数旁边是有理数还是无理数? 
  有理数旁边是无理数还是有理数,无理数旁边是有理数还是无理数? 
  如何评价王萼芳的高等代数教材? 
  数学是人类独有的吗? 

前一个讨论
为什么拓扑的连续映射不倒着定义?
下一个讨论
假设f在单连通域B内解析,B内有一条封闭曲线L(L有无限个自交点),请问在L上f的复积分为零吗?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利