百科问答小站 logo
百科问答小站 font logo



平面上两条 n 次曲线相交,交点的最大个数是否为 n²? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

直觉上认识,n条互相平行的直线是n次曲线的一种(尽管看起来是退化的情形)。两个(n条互相平行的直线)相互交叉就是n^2个交点。然后让n次曲线连续地变动,交点的个数也应该是连续变动的,但交点个数是整数,所以就总是n^2. (这里要恰当地定义好交点的重数)。这是证明Bezout定理的其中一个粗糙的思路。


user avatar   fattyymusic 网友的相关建议: 
      

是。代数几何(Algebraic geometry,数学的一个分支,不是“代数+几何”的合称)里有一个贝祖定理(Bézout's theorem)说的就是这个问题(不是数论里同名的那个定理)。

通俗点说可以这么理解(非完整证明,严格的表述及推导请看代数几何教材): 次平面曲线的方程就是一个二元 次多项式 ,同理,另一个 次曲线的方程是一个二元 次多项式 。它们联立求交点坐标,可以转化为求结式 (Resultant,不是留数,记号类似而已) 的解。根据代数基本定理,最高次为 的多项式方程最多有 个实根(若算上复数与重根,则一定有这么多),这意味着两条曲线最多可有 个实交点(只保证存在,不保证可解), 时即为 。

例子如下图,两条三次曲线最多有九个交点,二次和四次曲线最多有八个交点。

一个较硬核的数学描述参见:




  

相关话题

  已知一个圆,一个点和一条直线,如何找到一个与圆相切过点且圆心在直线上的圆? 
  对于当今数学来说,「几何」到底是什么? 
  如何看待美国小学要求 5 * 3 = 15 的过程必须写为 5 个 3 相加的形式? 
  如何评价2019年高考全国卷数学? 
  所有tanx的所有非零不动点的倒数平方和等于1/5这个怎么证明? 
  如果一个圆的半径无限大,那它还是一个圆吗? 
  該如何理解約翰·馮·諾伊曼(John von Neumann)的這段話? 
  这题怎么写,急? 
  怎样看待基础数学研究者瞧不上应用数学研究者的现象? 
  一个关于数学归纳法的悖论问题:到底是第 N 天有 N 个红眼睛自杀,还是什么都不会发生? 

前一个讨论
为什么拓扑的连续映射不倒着定义?
下一个讨论
假设f在单连通域B内解析,B内有一条封闭曲线L(L有无限个自交点),请问在L上f的复积分为零吗?





© 2025-06-07 - tinynew.org. All Rights Reserved.
© 2025-06-07 - tinynew.org. 保留所有权利