百科问答小站 logo
百科问答小站 font logo



为什么九宫格外面一圈数字顺时针或逆时针排列组成的八位数都能被 11 整除? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

被 整除的充要条件是:这个数的奇数位数字之和与偶数位数字之和,两者的差为 的倍数。而九宫格外圈的数字无论怎么转,都是对同一批数字进行这一操作。

例如 ,

是任何自然数的倍数,于是 可以被 整除。如果逆时针“转”一下,变成 ,我们发现原来在奇数位的数字跑到了偶数位,偶数位跑到了奇数位,但仍然是它们在求差。如果再“转”一下,奇、偶数位又回归原位。也就是说,被11整除在这一变换以及其逆下保持不动。

事实上,任意一个偶数位长的11的倍数都有这样的性质。




  

相关话题

  如果有一天上帝给了数学家素数的通项公式,这会对数学界有什么影响? 
  你见过最恶心的函数是什么? 
  为什么几乎所有教科书上对微分的讲解都不明不白? 
  根据这个四元四次方程组,计算 λ1 × λ2 × λ3 × λ4 的值。有什么简单方法? 
  这个不等式缩放怎么证明? 
  如果高考去掉一科,你会选数学吗? 
  数学各领域的巨著或者非常深入的教材是什么? 
  0.0……1中0的个数是无穷尽的,也就是说永远都不会出现1,那么0.0…1存在的意义是什么? 
  如何评价姜新文老师提出的NP=P这篇文章? 
  这里面有哪些思路算是民科思路? 

前一个讨论
请问下面这个命题成立吗?
下一个讨论
交换环的所有零因子和 0 组成的集合是一个理想吗?





© 2025-05-29 - tinynew.org. All Rights Reserved.
© 2025-05-29 - tinynew.org. 保留所有权利