百科问答小站 logo
百科问答小站 font logo



为什么矩阵内积的定义包含一个迹运算? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

引理:迹数拥有相似不变性。如果矩阵A和B相似的话,它们会有相同的迹。

0迹方阵:

A—>tr(A)

对角线和为0的方阵的象为0,特别地,对角线元素都是0的方阵是0迹方阵。


也就是说,这里的迹是一个等价划分,相似方阵的迹都相等,那么它们都是以0迹方阵为球心半径(的平方根)的球面上的元素。

迹同态:

迹映射的性质出人意料得强:

tr(A+B)=tr(A)+tr(B)

tr(k•A)=k•tr(A)

这是伟大的线性性,如果k是域上的元素,这就是线性空间了,迹在这个地方充当了同态映射的角色,即方阵空间在迹映射下同态于一个线性空间。

在这样的观点下,线性无关、维数、子空间等一系列概念大有用武之地。另外,迹在转置下具有不变性,矩阵的左乘和右乘在迹的观点下都是一样的...


回归正题,最主要的是,由内积可以导出范数、正交等概念,所以这个映射必须要把矩阵映射为数才行,这个其他答主都表示过了,我不再赘述。

希望我的胡说八道对题主有帮助。




  

相关话题

  线性映射为什么那么重要? 
  如何证明下面的问题? 
  为了使R^n成为向量空间,R^n中的加法运算和数乘运算是唯一的吗? 
  哈密尔顿-凯莱定理的本质是什么? 
  r个线性无关n维向量r<n的所有r阶子的平方和等于这r个向量张成平行体的体积的平方吗?怎么证明? 
  为何向量没有除法运算? 
  n阶矩阵A=(cos(αi−βj))n,如何证det(A)=0?n,如何证明det(A)=0? 
  一个无向图的邻接矩阵也是个实对称矩阵,它能否运用实对称矩阵的某些特有性质实现某些运用呢? 
  量子力学的Dirac符号系统优越性在哪,为什么不使用张量作为量子力学的数学语言基础? 
  奇异值分解(SVD)有哪些很厉害的应用? 

前一个讨论
三分之一等于零点三三循环,而三分之一乘3等于一,用零点三三循环乘三却等于零点九九循环?
下一个讨论
极小多项式有什么几何含义,怎么形象的理解这个概念?





© 2025-03-29 - tinynew.org. All Rights Reserved.
© 2025-03-29 - tinynew.org. 保留所有权利