百科问答小站 logo
百科问答小站 font logo



为什么矩阵内积的定义包含一个迹运算? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

引理:迹数拥有相似不变性。如果矩阵A和B相似的话,它们会有相同的迹。

0迹方阵:

A—>tr(A)

对角线和为0的方阵的象为0,特别地,对角线元素都是0的方阵是0迹方阵。


也就是说,这里的迹是一个等价划分,相似方阵的迹都相等,那么它们都是以0迹方阵为球心半径(的平方根)的球面上的元素。

迹同态:

迹映射的性质出人意料得强:

tr(A+B)=tr(A)+tr(B)

tr(k•A)=k•tr(A)

这是伟大的线性性,如果k是域上的元素,这就是线性空间了,迹在这个地方充当了同态映射的角色,即方阵空间在迹映射下同态于一个线性空间。

在这样的观点下,线性无关、维数、子空间等一系列概念大有用武之地。另外,迹在转置下具有不变性,矩阵的左乘和右乘在迹的观点下都是一样的...


回归正题,最主要的是,由内积可以导出范数、正交等概念,所以这个映射必须要把矩阵映射为数才行,这个其他答主都表示过了,我不再赘述。

希望我的胡说八道对题主有帮助。




  

相关话题

  如果把行列式定义中的(-1)^(逆序数)去掉,这种新的运算能用在哪里呢? 
  如何理解矩阵的复数特征值和特征向量? 
  n维向量空间V中向量的维数是否为n维? 
  请问这两个在表达方式上很相似的结论是否有相通的地方(感觉他们证明方法也很像)? 
  如何理解矩阵对矩阵求导? 
  如图,这道题中的隐函数为什么可以设y=tx? 
  为什么实对称矩阵一定可以正交对角化? 
  这一个高等代数的题如何证明? 
  微积分中的隐函数定理为什么那么重要? 
  三维空间中的旋转矩阵是怎样求出的? 

前一个讨论
三分之一等于零点三三循环,而三分之一乘3等于一,用零点三三循环乘三却等于零点九九循环?
下一个讨论
极小多项式有什么几何含义,怎么形象的理解这个概念?





© 2025-01-31 - tinynew.org. All Rights Reserved.
© 2025-01-31 - tinynew.org. 保留所有权利