百科问答小站 logo
百科问答小站 font logo



为什么(多个)向量共轭,使用的矩阵一定是要 对称正定 的? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。

使用正定对称阵,在线性空间中可以定义内积,有了内积就有了“正交”、“距离”的概念,这个距离是我们熟悉的欧氏距离的一种推广。

我们先看看欧氏空间的内积如何定义:


欧氏空间

欧氏空间就是在线性空间中定义了 内积 (•,•), 它是从向量空间到实数域上的二元函数 ,满足以下三条公理:

对称性

( a , b )=( b , a )

•( 线性

(k a +l c , b )=k( a , b )+l( c , b )

正定性

( a , a )>=0, 等号成立当且仅当 a 为零向量

以上系数皆属实数域。

正交

有了内积的定义,我们就可以定义何为两个向量的夹角、正交的概念。

两向量夹角余弦 :

cos< a , b >=( a , b )/(| a |•| b |)

特别的,当两向量正交(垂直)时,有

( a , b )=0

此两者互为充要条件。


如果我们将上面的内积定义为:

(a,b)=t(aG·b

其中t(a)指a的转置,G为对称正定阵。


有没有发现这个“内积”三条公理全都满足!


有了内积,我们可以仿照上述方式定义距离、夹角、正交等概念,即题主所说的共轭。在统计学中的聚类分析中,定义的马尔可夫距离正如同此形式。



在二次曲线中,类似的定义早已出现。

其中A₀表示二次曲线二次项系数所对应的二次型矩阵。




  

相关话题

  向量组等价时其秩一定想等吗? 
  矩阵P和矩阵Q的秩相等为t,那么拼在一起的矩阵(P,Q)的秩是否为t?为什么? 
  请问能给出一个例子,使一个向量空间的子集只满足包含0且对加法封闭但不对标量乘法封闭吗? 
  矩阵链相乘的时间复杂度为什么末尾是dn呢,是那么算的呢? 
  向量组等价时其秩一定想等吗? 
  请问怎么证明一个实对称矩阵为零矩阵(如题)? 
  如何理解矩阵的「秩」? 
  如何理解矩阵的复数特征值和特征向量? 
  拉普拉斯变换的物理意义是什么? 
  一个无向图的邻接矩阵也是个实对称矩阵,它能否运用实对称矩阵的某些特有性质实现某些运用呢? 

前一个讨论
为什么积分|z|=3会变成1/3?
下一个讨论
这种游戏规则是否有必胜策略?





© 2025-05-09 - tinynew.org. All Rights Reserved.
© 2025-05-09 - tinynew.org. 保留所有权利