百科问答小站 logo
百科问答小站 font logo



为什么(多个)向量共轭,使用的矩阵一定是要 对称正定 的? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

谢邀。

使用正定对称阵,在线性空间中可以定义内积,有了内积就有了“正交”、“距离”的概念,这个距离是我们熟悉的欧氏距离的一种推广。

我们先看看欧氏空间的内积如何定义:


欧氏空间

欧氏空间就是在线性空间中定义了 内积 (•,•), 它是从向量空间到实数域上的二元函数 ,满足以下三条公理:

对称性

( a , b )=( b , a )

•( 线性

(k a +l c , b )=k( a , b )+l( c , b )

正定性

( a , a )>=0, 等号成立当且仅当 a 为零向量

以上系数皆属实数域。

正交

有了内积的定义,我们就可以定义何为两个向量的夹角、正交的概念。

两向量夹角余弦 :

cos< a , b >=( a , b )/(| a |•| b |)

特别的,当两向量正交(垂直)时,有

( a , b )=0

此两者互为充要条件。


如果我们将上面的内积定义为:

(a,b)=t(aG·b

其中t(a)指a的转置,G为对称正定阵。


有没有发现这个“内积”三条公理全都满足!


有了内积,我们可以仿照上述方式定义距离、夹角、正交等概念,即题主所说的共轭。在统计学中的聚类分析中,定义的马尔可夫距离正如同此形式。



在二次曲线中,类似的定义早已出现。

其中A₀表示二次曲线二次项系数所对应的二次型矩阵。




  

相关话题

  设A,B,C均为n阶半正定实对称矩阵,使得ABC是对称阵.证明:ABC也是半正定阵.请问该怎么证明? 
  为何向量没有除法运算? 
  矩阵链相乘的时间复杂度为什么末尾是dn呢,是那么算的呢? 
  为什么说用矩阵定义线性映射是一个糟糕的观点? 
  拉普拉斯变换的物理意义是什么? 
  将斐波那契数列从左到右、从上往下地依次填入一个n*n的矩阵中,当n≥3时,行列式是否一定为0? 
  关于整矩阵的一道题怎么解? 
  向量有除法吗?高中数学人教版选修2-1的思考题? 
  矩阵的指数函数到底说的是个啥? 
  这个矩阵的秩如何证明? 

前一个讨论
为什么积分|z|=3会变成1/3?
下一个讨论
这种游戏规则是否有必胜策略?





© 2025-06-23 - tinynew.org. All Rights Reserved.
© 2025-06-23 - tinynew.org. 保留所有权利