百科问答小站 logo
百科问答小站 font logo



在整环中,若两个非零元存在最大公约数,则它们是否一定也存在最小公倍数? 第1页

  

user avatar   smiledaniel 网友的相关建议: 
      

好像并不对。

先仔细定义一下最大公约数。d=hcf(a,b)需要满足d|a, d|b并且任意满足这个性质的c都有d|c。同理l=lcm(a,b)应该是满足a|l, b|l并且任意满足这个性质的c都有l|c。

lcm存在推出hcf存在:

考虑d=ab/lcm。注意到d是ring里面的element,因为 。这个d也是hcf,因为首先 ;所以d是一个公约数。如果另外一个c也是公约数,那么 ,所以 。所以d就是hcf。

hcf并不能推出lcm反例:

考虑 的满足 是偶数的subring(因为0*0=0,0+0=0 mod2),然后考虑 。hcf是1,因为 ,所以猜lcm是4x,但是取c=2x^3就有 。所以lcm不存在。


另一方面如果任意pair的两个hcf都存在,那确实可以推出lcm存在。更强的结论是




  

相关话题

  如何提升线性代数的计算(行列变换)能力? 
  能否求出n次对称群中置换的最大阶? 
  是否存在多项式 f(x)、g(x)、m(y)、n(y),使得 (xy)²+xy+1=fm+gn? 
  如果从图中移去一个边的一个集合将增加亚图的数目时,被移去的边的集合就成为截。”那么,亚图是什么?截呢? 
  如果换一种几何,圆周率的值会变么? 
  求问学抽象代数的大佬,如果f(x)的次数为n,那么分裂域E/F的次数为什么是n!,分裂域的次数是什么? 
  多次试图学习抽象代数,但屡屡受挫,该怎么办? 
  迹的几何意义是什么? 
  将斐波那契数列从左到右、从上往下地依次填入一个n*n的矩阵中,当n≥3时,行列式是否一定为0? 
  这个矩阵的秩如何证明? 

前一个讨论
有限正函数,在任意区间里可测且勒贝格积分无限的函数怎么构造?
下一个讨论
复变函数问题。这个题该如何解决?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利