百科问答小站 logo
百科问答小站 font logo



复变函数问题。这个题该如何解决? 第1页

  

user avatar   wan-qiu-shi-nei-tun-rou-shao-zhi-zhi-huang 网友的相关建议: 
      

稍微想了一下,发现有几种做法,但就是没想到怎么用环绕数做。

方法1:由对称原理, 可延拓到整个复平面上,此时得一有界整函数,由刘维尔定理, 因此 在 上为常值函数。

方法2:由于 在 上全纯,其虚部 为 上调和函数,而 为实值函数,因此 在 上恒为0,由weak maximum principle, ,因此 为实值函数且全纯,只能是常值函数。

方法3:非常值全纯函数 为开映射,因此将区域 映为两个有界区域 ,且 ,于是 ,这显然是不可能的,因此 为常值函数。

方法4:由于 ,取 满足 ,则

即 ,因此 为实值全纯函数,故为常值函数。

方法5:设

任取 ,考虑函数 ,再考虑集合 ,记函数 ,则

因此由(推广的)鲁歇定理, 与 在 上有相同的零点数,但根据定义, 没有零点,因此 为实值全纯函数,故为常值函数。




  

相关话题

  作为维数公式的黎曼-洛赫定理在数学上的重要性体现在什么地方? 
  满足f(z+1)=2f(z),f(0)=1的解析函数唯一吗? 
  实变函数证明第八题? 
  有哪些关于复数/复变函数的有趣知识? 
  如果幂级数的收敛圆是B(0,R),且在收敛圆内一致收敛,那么是否在收敛圆的闭包也一致收敛? 
  Γ(i)怎么算? 
  到底是用实数定义了复数,还是用复数定义了实数? 
  留数,若尔当引理证明,有一处看不懂求指点? 
  作为维数公式的黎曼-洛赫定理在数学上的重要性体现在什么地方? 
  复变函数中,如何说明Ln(z²)与2Lnz是否相等,Ln(根号z)与(Lnz)/2是否相等? 

前一个讨论
在整环中,若两个非零元存在最大公约数,则它们是否一定也存在最小公倍数?
下一个讨论
范畴论中一个范畴里两个对象之间的态射的全体为什么要是一个集合?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利