百科问答小站 logo
百科问答小站 font logo



复变函数问题。这个题该如何解决? 第1页

  

user avatar   wan-qiu-shi-nei-tun-rou-shao-zhi-zhi-huang 网友的相关建议: 
      

稍微想了一下,发现有几种做法,但就是没想到怎么用环绕数做。

方法1:由对称原理, 可延拓到整个复平面上,此时得一有界整函数,由刘维尔定理, 因此 在 上为常值函数。

方法2:由于 在 上全纯,其虚部 为 上调和函数,而 为实值函数,因此 在 上恒为0,由weak maximum principle, ,因此 为实值函数且全纯,只能是常值函数。

方法3:非常值全纯函数 为开映射,因此将区域 映为两个有界区域 ,且 ,于是 ,这显然是不可能的,因此 为常值函数。

方法4:由于 ,取 满足 ,则

即 ,因此 为实值全纯函数,故为常值函数。

方法5:设

任取 ,考虑函数 ,再考虑集合 ,记函数 ,则

因此由(推广的)鲁歇定理, 与 在 上有相同的零点数,但根据定义, 没有零点,因此 为实值全纯函数,故为常值函数。




  

相关话题

  作为维数公式的黎曼-洛赫定理在数学上的重要性体现在什么地方? 
  如何理解Riemann映射定理? 
  复数范围内,一个数的整数次方是不是永远只有一个值?以及如何证明一个数的无理数次方对应无穷个值? 
  为什么积分|z|=3会变成1/3? 
  单复变函数的曲面积分有意义吗? 
  零点和极点个数有限的函数是否为有理函数? 
  单复变函数的曲面积分有意义吗? 
  实变函数证明第八题? 
  对任意一个u∈C(复数域),是否有|ln(1+u)|≥ln(1+|u|)? 
  是否有可能在复数域上建立一个与加法、乘法相容的全序关系? 

前一个讨论
在整环中,若两个非零元存在最大公约数,则它们是否一定也存在最小公倍数?
下一个讨论
范畴论中一个范畴里两个对象之间的态射的全体为什么要是一个集合?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利