也即是证明 是开集,
这是我们需要证明的。
我们考虑 :对于充分大的 (如果 太小,下述定义可能不存在),
我们约定 表示这个级数的截断求和(前 项求和,项数不够,用 来凑). 由极限保号性: ,但由假设 ,于是只能有 ,于是令 ,通过上面 与 的构造故有:
这个证明旨在构造一个“空隙” ,这个空隙无论多小,总是可以作为 的一个开邻域。证明有些过于简洁,由于过分追求符号化而导致模糊的地方需要详细说明,但是这个就留给读者吧。
欢迎批评指教。