百科问答小站 logo
百科问答小站 font logo



条件收敛级数重排问题,为什么这种想法很荒唐? 第1页

  

user avatar   yu-guang-ting-92 网友的相关建议: 
      

举一个简单的重排例子: ,其正数项和负数项分别满足

我们可以取每取 项正数后取1项负数,于是可以写成

>

右边第二行开始每一行正数项求和是 ,所以第 行的和为 ,

不必把正项全用完再加负项就能使 发散。

对于一般的条件收敛级数也可以用类似方法构造一个排列使得重拍级数发散。


user avatar   inversioner 网友的相关建议: 
      

一个只有有限个正项或者负项的收敛级数一定绝对收敛。

所以正项与负项都有无限个,无限个项不可能「用完」。




  

相关话题

  如何证明该级数收敛? 
  请问二重积分的换元法中,雅克比矩阵是怎么转化成雅克比行列式的? 
  我需要选这样的数学系吗? 
  这道关于定积分的题该如何解决? 
  这个式子对吗?若是,具体步骤是什么? 
  是否存在这样一个非常数函数,定义域是实数集或其子集,值域仅为有理数集子集?是否有这样的函数是连续的呢? 
  围棋存在先手必胜/后手必胜的情况,又是否所有回合制游戏只要算力达到了就一定有先手必胜或者先手必输法则? 
  如何考虑这个2022贺年题? 
  以下极限是否存在? 
  数学中,类似 π、e 的独立的常数还有哪些? 

前一个讨论
怎么用泰勒公式估计通项趋于零的阶以判断级数的敛散性?
下一个讨论
如何将条件收敛级数 1-1+1/2-1/2+1/3-1/3+1/4-1/4+...证其发散?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利