百科问答小站 logo
百科问答小站 font logo



条件收敛级数重排问题,为什么这种想法很荒唐? 第1页

  

user avatar   yu-guang-ting-92 网友的相关建议: 
      

举一个简单的重排例子: ,其正数项和负数项分别满足

我们可以取每取 项正数后取1项负数,于是可以写成

>

右边第二行开始每一行正数项求和是 ,所以第 行的和为 ,

不必把正项全用完再加负项就能使 发散。

对于一般的条件收敛级数也可以用类似方法构造一个排列使得重拍级数发散。


user avatar   inversioner 网友的相关建议: 
      

一个只有有限个正项或者负项的收敛级数一定绝对收敛。

所以正项与负项都有无限个,无限个项不可能「用完」。




  

相关话题

  如何证明下面的分析不等式? 
  不定积分做不好怎么改善? 
  这道题该怎么做呢?(数分)? 
  如何证明此不等式呢? 
  如果你能向未来的自己提三个问题你会题什么? 
  如何求解下面有关gamma函数的积分? 
  请问这个不定积分有什么比较直观且符合逻辑的推导过程吗? 
  这种积分怎么算? 
  如何求这两个极限? 
  数学上积分结果的本质是什么? 

前一个讨论
怎么用泰勒公式估计通项趋于零的阶以判断级数的敛散性?
下一个讨论
如何将条件收敛级数 1-1+1/2-1/2+1/3-1/3+1/4-1/4+...证其发散?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利