百科问答小站 logo
百科问答小站 font logo



请问泰勒公式的几何意义是什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

基础概念[1]

设 中的曲线 ,其中 是弧长参数,

其基本性质

还需要知道以下概念:

  • 切向量:
  • 主法向量:
  • 从法向量:

还有基本的 Frenet 公式

其中 是曲率、 是挠率,它们是数量函数。

空间曲线的 Taylor 展开

下面,将曲线 在 处 Taylor 展开(不妨设 )

利用 Frenet 公式带入:

也就是说,我们在 Frenet 标架 代替原有的坐标系,可以得到局部近似曲线 :

当上述挠率 时,空间曲线退化为平面曲线,所以我们只需要考虑曲率就够了(挠率是从第三个维度 才开始出现的)。

反过来,由曲线论基本定理,当给定可微函数 ,连续函数 ,可以局部得到惟一的正则空间曲线曲线 ,分别以之为曲率和挠率。

总结

这是通过 中的曲线解释泰勒公式,事实上我们只用到了 Taylor 的三阶项。如果考虑 中的曲线,我们就会需要更多项来解释:类比曲率、挠率的概念,在高维空间需要我们考虑曲线在其余维度上的扭转和弯曲……而的高阶项可以视为来自高维空间的微小扰动。


后续

接下来有时间的话,我打算补充一下多元函数的 Taylor 公式的几何解释,不过需要我自己理清思路。以上内容来自沈一兵老师的著作。

参考

  1. ^ 沈一兵《整体微分几何初步》



  

相关话题

  一道证明题,看看大家的思路是怎样的? 
  球面坐标计算三重积分公式怎么来的? 
  一个同时有内切椭圆和外接椭圆的多边形满足什么条件? 
  基础薄弱怎么学好高中数学? 
  现代数学和理论物理已经发展到怎样一个令人震惊的水平了? 
  为什么「数学」不属于「自然科学」? 
  正整数真的和自然数一样多么? 
  不定积分∫dx/(2 + sinx)在x = π+2kπ处,为何会这样?这是不定积分的某种“特性”吗? 
  如何评价陈天权《数学分析讲义》? 
  《现代数学基础丛书》的封面图有什么数学背景? 

前一个讨论
总会有被定义的感觉怎么办?
下一个讨论
你如何记忆∫sinⁿxdx、∫cosⁿxdx、∫tanⁿxdx 的递推公式?





© 2025-04-02 - tinynew.org. All Rights Reserved.
© 2025-04-02 - tinynew.org. 保留所有权利