百科问答小站 logo
百科问答小站 font logo



请问泰勒公式的几何意义是什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

基础概念[1]

设 中的曲线 ,其中 是弧长参数,

其基本性质

还需要知道以下概念:

  • 切向量:
  • 主法向量:
  • 从法向量:

还有基本的 Frenet 公式

其中 是曲率、 是挠率,它们是数量函数。

空间曲线的 Taylor 展开

下面,将曲线 在 处 Taylor 展开(不妨设 )

利用 Frenet 公式带入:

也就是说,我们在 Frenet 标架 代替原有的坐标系,可以得到局部近似曲线 :

当上述挠率 时,空间曲线退化为平面曲线,所以我们只需要考虑曲率就够了(挠率是从第三个维度 才开始出现的)。

反过来,由曲线论基本定理,当给定可微函数 ,连续函数 ,可以局部得到惟一的正则空间曲线曲线 ,分别以之为曲率和挠率。

总结

这是通过 中的曲线解释泰勒公式,事实上我们只用到了 Taylor 的三阶项。如果考虑 中的曲线,我们就会需要更多项来解释:类比曲率、挠率的概念,在高维空间需要我们考虑曲线在其余维度上的扭转和弯曲……而的高阶项可以视为来自高维空间的微小扰动。


后续

接下来有时间的话,我打算补充一下多元函数的 Taylor 公式的几何解释,不过需要我自己理清思路。以上内容来自沈一兵老师的著作。

参考

  1. ^ 沈一兵《整体微分几何初步》



  

相关话题

  如何定义数? 
  有没有那种可以自由交流数学问题的社区? 
  有没有碰到过可以通过建立物理模型且运用了物理基本原理来得到解析解的数学题? 
  一加一怎么等于二? 
  如何通俗地解释混沌理论(chaos)和分岔理论(bifurcation)? 
  如何求和这个级数? 
  数学差的关键原因是缺乏抽象思维还是逻辑性弱? 
  为什么总有一些人推荐计算机学生把重点放在高数和线代? 
  如何证明不等式(来自小蓝本)? 
  为什么几乎所有教科书上对微分的讲解都不明不白? 

前一个讨论
总会有被定义的感觉怎么办?
下一个讨论
你如何记忆∫sinⁿxdx、∫cosⁿxdx、∫tanⁿxdx 的递推公式?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利