百科问答小站 logo
百科问答小站 font logo



拉氏乘数法中为什么认为最值一定是极值呢? 第1页

  

user avatar   yangshusen96 网友的相关建议: 
      

本文的完成经过了 @柴斯基 的帮助。

在实际问题中,被讨论的优化问题即最值问题常常针对凸集上的凸函数,并且是二阶连续可微的。

以下假定 是开集,即不存在边界,并且所谓的凸函数其实是严格凸函数。

在 维欧氏空间上,称一个点集 是凸集,是指对于任意 和 成立

特别地,在实数集上,所有的开区间都是凸集;在平面上,椭圆盘、抛物线的内侧等等都是凸集。

称凸集 上的 元函数 是凸函数,是指对于任意 和 成立

例如二次函数 是实数集上的凸函数。进一步地,所有的正定二次型

都是凸函数,证明留做习题。

我们有类似一元微积分中的结论。设 是凸集 上的二阶连续可微的 元函数,则 是凸函数的充分条件是 对于任意 是正定矩阵,其中 定义为

根据多元微积分理论,设 是区域 上的二阶连续可微的 元函数, 满足

且 正定,则 是 的极小值点。所以凸函数的所有稳定点都是极小值点。

进一步地,凸函数的稳定点如果存在,那么是唯一的。这是因为稳定点处的所有方向导数都是零,在之前的假设下,任取单位向量 构造 上的函数

其中 是使得 总有意义的最大值,则 和 都单调递增,进而 在形如 的点处方向为 的方向导数大于零,说明此点不是稳定点。

再由凸集的定义,这些点与 完全囊括了凸集 并且 所以 也是 的最小值点。

综上所述,凸集上的凸函数至多有一个稳定点,当有稳定点时,它是极小值点,也是最小值点。




  

相关话题

  以数学史的观点来看,集合论是如何成为数学基础的? 
  为什么 7.9 英寸 4:3 的屏幕要比 5.1 英寸 16:10 的屏幕大一倍还多? 
  伽马函数的这个性质? 
  f(x,y)->(x,y),是2维实数空间的 一一映射函数,f连续,f的反函数是否也连续,why? 
  大学数学具体学什么,以及相关的自学用书? 
  复变函数中多值函数的黎曼面是不是不唯一? 
  为什么教科书要写的这么复杂? 
  中国的物理学、数学在未来一段时间内有望跻身世界领先水平,或者说能够成为世界的一个重要数学或物理中心吗? 
  本人高中生疑似发现质数个数分布规律,下一步应该怎么做? 
  如何看待高考语文难度提高,数学难度降低?你是否赞成? 

前一个讨论
黎曼-斯蒂尔杰斯积分有什么存在的意义吗?
下一个讨论
为什么复变函数中定义无穷远点的留数时积分路线的方向是负的?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利