百科问答小站 logo
百科问答小站 font logo



是否存在一个非实值解析函数f(z)在一个给定的圆周线|z|=c上,使得f(z)为实数? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

题目没有说清楚 在哪解析。

如果只是在某一个开集上,那 肯定是存在的,例如 ,稍加计算就有 ,即在圆周 上取实值。

但我们感兴趣的是 在整个 上解析的情况。此时这样的 的确是不存在的。由于题主的表述不清晰,这里重新表述一下题主的命题:

给定 ,则不存在 上的解析函数 ,使得 在圆周 上取实数,并且在某个点 上不取实数。

借用以前答题用过的图片(记号稍稍不同,下图用 表示 ,用 表示圆的半径 )

上图 是 的实部。那么同理设 是 的虚部,就有 ,类似的论证就有当 时 ,但在给定的圆 上由于函数取实值所以虚部 ,所以右边的积分是 。因此对任何 都有 ,这意味着 只能是(实)常数,与题设矛盾。

【附】今天看到一个回答非常出色,推荐↓




  

相关话题

  是否存在这样一个非常数函数,定义域是实数集或其子集,值域仅为有理数集子集?是否有这样的函数是连续的呢? 
  为什么自然数的和等于 -1/12? 
  函数(满足一定条件)能不能以无穷乘积的形式展开? 
  怎么理解外微分式的连续性? 
  设有界函数在某一闭区间上的不连续点为{Xn},且极限寻在,证明该函数在这个闭区间可积? 
  如何运用积分的知识去解这一道数学分析的题目? 
  该如何学好数学分析? 
  数学中,类似 π、e 的独立的常数还有哪些? 
  连分式近似怎么操作? 
  区间连续是逐点定义的,从而有区间上一致连续的概念。区间可导也是逐点定义的,为什么没有一致可导的概念? 

前一个讨论
范畴论中一个范畴里两个对象之间的态射的全体为什么要是一个集合?
下一个讨论
如何证明紧致的度量空间都是第二可数空间?





© 2025-03-27 - tinynew.org. All Rights Reserved.
© 2025-03-27 - tinynew.org. 保留所有权利