微分几何曲线论的部分,我觉得要习惯使用“两把刷子”。
一把是用弧长参数“证明”。弧长参数用它证明不香吗?切向量只要对弧长参数求个导就得到了,而且有很简洁的几何关系,尤其是建立Frenet标架的时候……
另一把是用一般参数“算”。弧长参数确实香,但是不是任何曲线的弧长参数表示都简洁,而且通常情况下,一般参数转化为弧长参数得到的结果都很恶心。所以,算的时候就不要拘泥于弧长参数了,弧长参数其实只是参数的一种,而且几何研究的对象往往是那种——无论你怎么变换参数都不变的几何性质,弧长参数能做到的,一般参数也能,所以在计算的时候,要熟练运用一般参数的公式。
一般在学习微分几何的时候,过分注重计算,会错失对更抽象层面的观察;过分强调证明而忽略计算,你会发现你学的很茫然,走的每一步都没有安全感。我本科接触微分几何的时候,我以为算算算就是它的全部了,好简单啊~后来我研究生学微分几何,抽象得要死,算一个具体的例子都举步维艰,又后悔自己算的太少了……
我做本科微分几何的助教的时候,当时教授用的是陈维桓的书(《微分几何初步》),本科的学弟学妹们惨遭这本书的轰炸煎熬。但这本书确实对于研究生微分几何的内容衔接上很有帮助。陈的巨著《微分几何》也是难啃的骨头……