对于欧式空间中的子流形,黎曼度量定义了其上的几何量的度量,这个度量可以是欧式度量,也可以是非欧度量。如果是欧式度量,则利用它可以直接在流形上内蕴地计算相关几何量,而不用将其嵌入到外围欧氏空间中进行求解。
黎曼度量可以定义在抽象流形上,这样就可以将欧式空间的几何度量推广到抽象流形上去。
谢邀。黎曼度量实际上给了你一把尺子,可以量黎曼流形上曲线的长度。
为了说明这一点,我们先回忆,在多元微积分中学过的,欧氏空间中(可微)曲线的长度计算公式(第二类曲线积分): 在这里我们度量切向量的长度,使用的是的内蕴度量(也就是直接用勾股定理算长度)。
但是如果我们强行规定为另一个长度(对所有的t都这样做),那么就得到了沿着曲线的另一个度量。如果我们对所生活的流形M的每一点的每一个切向量都规定一个长度(实际上是对每个切空间规定一个内积,因为我们至少希望可以这个长度是线性增长的,且我们希望可以讨论“垂直”这个概念),那么我们就得到了一个黎曼度量(当然我们一般要求这个内积对底流形上的点是光滑依赖的)。
所以我们可以看出黎曼度量是个很flexible的东西,我们几乎可以“随心所欲”的操纵他,修改他。所以我们真正感兴趣的,往往是一些满足特定性质的度量,比如常截面曲面度量,恒正(或者恒负)截面曲率度量,常数量曲率度量,Einstein度量,blabla.