百科问答小站 logo
百科问答小站 font logo



如何证明不全无界的两不相交闭集之间的的距离大于0? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

如果是在一般的度量空间下,这个命题是不对的。考虑度量空间 ( 就是 这个度量)。作 上的函数序列 , 。考虑 , 。有:

  • 和 不全无界(甚至都有界)
  • 和 不相交(每个函数都不一样)
  • 和 都是闭集。这个不是很显然,以复杂的 为例。我们只需说明: 没有聚点。进一步只需说明: 不存在 意义下收敛(即一致收敛)的子列。假如 有收敛子列 ,一致收敛于 ,首先由 在 上点态收敛于 得知 也必在 上点态收敛于 ,故 在 上只能是 ,由连续性 在 上恒等于 ,但 ,故 不可能一致收敛于 ,矛盾。
  • 和 距离是0. 这是因为

所以上述就是反例。


如果改动一下题目的表述,比如,

如果 是紧集 是闭集且二者不相交,则其距离大于0

这个命题是正确的。此时也可以知道这与题主命题的差别:有界闭集未必是紧集。

证明很简单,首先 中任何点 到 的距离都是正的,记为 (为什么?利用 是闭集的事实,以及闭集是开集的补集这个定义去证)。然后考虑 的开覆盖 ,由 是紧集的事实知道存在有限覆盖 ,记 ,剩下的你就知道该怎么办了。

评论区也给出了非常优秀的做法,就是紧集到闭集的距离作为紧集上的函数是连续的。注意这需要用到连续函数把紧集映成紧集的事实,像是紧集,下确界是可以取到的,所以必须大于0。这也看出来原来的有界闭集为什么不对,因为连续函数不一定把有界闭集映成有界闭集。




  

相关话题

  李煌的阶乘计算小技巧,与斯特林公式有什么区别? 
  是否存在仅由1和2组成的长度为2^n的序列,可以做到在这个序列中取出所有含1和2的长度为n的序列? 
  有哪些神奇的级数求和? 
  该函数的最小值是多少?应该怎么解?思路是什么? 
  定义怎么证明这个阶乘极限? 
  如何判断任意无理数的无理数次方是否为有理数或是无理数? 
  这个不定积分如何化简呢? 
  这个积分有人会不呀 我想不通? 
  为什么有理数 1/49 看起来这么像是个无限不循环小数?循环节在哪里? 
  为什么拓扑的连续映射不倒着定义? 

前一个讨论
为什么left adjoint的存在性和comma category有关?
下一个讨论
英文中省略和椭圆(ellipsis/ellipse)、夸张和双曲线(hyperbole/hyperbola)、隐喻和抛物线(parabole/parabola)等修辞和几何术语非常相似,它们有什么渊源吗?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利