如果是在一般的度量空间下,这个命题是不对的。考虑度量空间 ( 就是 这个度量)。作 上的函数序列 , 。考虑 , 。有:
所以上述就是反例。
如果改动一下题目的表述,比如,
如果 是紧集 是闭集且二者不相交,则其距离大于0
这个命题是正确的。此时也可以知道这与题主命题的差别:有界闭集未必是紧集。
证明很简单,首先 中任何点 到 的距离都是正的,记为 (为什么?利用 是闭集的事实,以及闭集是开集的补集这个定义去证)。然后考虑 的开覆盖 ,由 是紧集的事实知道存在有限覆盖 ,记 ,剩下的你就知道该怎么办了。
评论区也给出了非常优秀的做法,就是紧集到闭集的距离作为紧集上的函数是连续的。注意这需要用到连续函数把紧集映成紧集的事实,像是紧集,下确界是可以取到的,所以必须大于0。这也看出来原来的有界闭集为什么不对,因为连续函数不一定把有界闭集映成有界闭集。