当然有关系,在古希腊语里面它们是完全相同的:ἔλλειψις, ὑπερβολή, παραβολή,在16世纪的新拉丁语中拼写为ellipsis, hyperbola, parabola,在18世纪以前的英语中有时直接采用新拉丁语的拼法,有时则写成ellipse, hyperbole, parabole,两种拼法混杂,不加区分。只是到了18世纪以后,英语才逐步固定下来用ellipsis, hyperbole, parabole表示省略、夸张、比喻,用ellipse, hyperbola, parabola表示椭圆、双曲线和抛物线,以示区别。
ἔλλειψις的主要意思是「短缺」「缺少」「不足」,来自动词ἐλλείπειν「留下」「剩下」「略去」(λείπειν是「离开」「留下」,ἐν-是起强化语意作用的动词前缀,在λ前面变形为ἐλ-)。
ὑπερβολή的主要意思是「超出」「过度」,来自动词ὑπερβάλλειν「扔过线」「射过头」(βάλλειν是「投掷」,ὑπερ是「超过」「在……以上」)。
(以上两词常作为一对反义词使用,例如柏拉图《政治家篇》283C-285C讨论「过度」与「不足」的含义,亚里士多德《尼各马可伦理学》1107a3说德性是「过度与不足的中项」,都是用这两个词。)
παραβολή的主要意思是「并置」「比较」「类比」,来自动词παραβάλλειν「扔在……的旁边」(παρα是「在……边上」「跟……肩并肩」),这个动词在几何学中又表示「在一条线段上画一个矩形」(也就是「把一个矩形跟一条线段对齐放置」)。
由于它们的主要用法是「缺少」「过度」和「类比」,所以它们先是被用在语法和修辞学中,分别表示「省略」「夸张」和「比喻」,在亚里士多德等人的著作中已经这么用了。[1]
而把它们用作三种圆锥截线的名称则是后来的事。阿波罗尼奥斯(Apollonius of Perga)在他的《圆锥截线论》第一卷定理11, 12, 13刻画了三种圆锥截线的一个重要特征性质,根据这一性质将它们分别命名为παραβολή, ὑπερβολή和ἔλλειψις,具体如下(没耐心看可以直接跳到图下面那段):
如图,有一个以A为顶点,圆BC为底面的圆锥。三角形ABC是过圆锥的轴的截面。用一个不与底面平行的平面去截圆锥,得到一条圆锥截线。设该平面与圆锥底面的交线DE跟BC垂直,并设该平面与平面ABC的交线为FG。则所得截线有三种情形:如果FG平行于AC,截线就是我们今天说的抛物线;如果FG与AC的反向延长线相交,截线就是双曲线的一支;如果FG与AC相交,截线就是椭圆。
阿波罗尼奥斯的上述三条定理说的是,从圆锥截线上每一点K到FG连一条线段KL平行于DE,可以证明,在上述三种情形中,线段KL跟线段FL之间各有一种确定的关系。这个关系可以通过在FL上画出的一个辅助矩形来表达,该矩形的另一条边FH按如下比例关系来确定:
对于FG平行于AC的情形,FH这样来确定:以BC为边的正方形与以AB和AC为边的矩形之比跟FH与FA之比相同(用今天的话来说就是:BC²/(AB∙AC) = FH/FA )。对于FG与AC或AC的反向延长线相交的情形,设交点为P,作AM平行于FG,交BC于M,然后这样来确定FH:以AM为边的正方形与以BM和CM为边的矩形之比跟FP与FH之比相同(用今天的话来说就是:AM²/(BM∙CM) = FP/FH )。[2]
这样定出FH之后,在FL上画出以FH为另一边的矩形,我们不妨称之为矩形1;再在FL上画一个矩形等于以KL为边的正方形,称之为矩形2。阿波罗尼奥斯证明,在FG平行于AC的情形中,对于每一个点K,矩形2就是矩形1,即矩形2恰好跟FH对齐,因此阿波罗尼奥斯把这种情形下的圆锥截线称为παραβολή。在FG与AC反向延长线相交的情形中,矩形2总是超出矩形1一块,因此阿波罗尼奥斯把这种情形下的圆锥截线称为ὑπερβολή。在FG与AC相交的情形中,矩形2总是比矩形1短少一块,因此阿波罗尼奥斯把这种情形下的圆锥截线称为ἔλλειψις。[3]这就是三种圆锥截线名称的由来。
今天中文里的椭圆、双曲线是根据形状命名,抛物线则是根据物理学的抛物运动轨迹命名,完全脱离了它们在希腊数学中的原本意思。朱恩宽等将其翻译成亏曲线、超曲线、齐曲线,也是不错的译法,更接近其原始含义。
------------------