在着手解答之前,我们不加证明地陈述两个将要用到的结论
若 是无理数,则 在 上呈均匀分布。[1][2]
若 在 上呈均匀分布,且 在 上可积,则 [3]
利用这些,我们首先来导出不太常见但十分有趣的极限
由 是无理数,取 代入 ,知 在 上呈均匀分布,而依三角恒等式,有 于是取 代入 ,就成立 这就是 的结果。
接着,我们利用 来推证另一个极限结论
考虑利用 分部求和。为此,记 则 于是 这就证得了
最后,我们来证明如下结论
若 则
这只需要利用序列极限定义就够了。依条件,对任意给定的 只要 充分大,就有
于是,对这充分大的 也将成立
打开绝对值号后取 的极限[4],即得
又由 的任意性,知 这就得证了。
至此,所有准备工作均已完毕,答案呼之欲出。命
代入上述结论,即得
这就是要求的。
估算一个上界。思路是每一轮都寻求一条最短线段,将当前包含天使的多边形,按面积等分成两个新的子多边形。再假设天使的运气足够好,每次都瞬移到等分效率较低的子多边形。
直观看出,取平行于正三角形一条边的线段来等分其面积,等分效率最高。令此线段长度 ,三角形边长 ,则:
这样,初始正三角形被分成一个新的小正三角形和一个等腰梯形,易见等腰梯形的等分效率远高于新的小正三角形,于是根据假设,天使将瞬移到新的小正三角形当中。如此循环,至于无穷,天使将被锁定在初始正三角形的一个顶点。计算魔鬼走过的耗时路程:
记魔鬼速度 ,则捉住天使的时间:
这个题目如此离散,不借助于数值离散优化不易得到全局最优解,建议大家来改进这个上界吧。
按照 @yyx 说的圆弧线等分正三角形以及后续的扇形,上界可以改进为: