百科问答小站 logo
百科问答小站 font logo



一个具有介值性的函数是否一定存在原函数? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

谢邀。

我给其他人解释一下什么是达布中值定理:一个函数 可导,那么对于任意 ,可以找到 使得 ,这个性质可以说明任何一个函数的导数(如果存在)是“几乎”是连续的。 这个性质叫达布性质。我们把具有达布性质的函数称为达布函数。设 当 而 当 ,这个函数不满足达布性质,他不可能有原函数,但是它黎曼可积。换句话说,我们给出了一个最简单的黎曼可积但是原函数不存在的函数


题主的问题就是一个函数如果有达布性质,那么它一定具有原函数吗?一个很自然的问题。

这个问题有两个解法,一个优美的间接方法,一个暴力的直接方法。:第一个优美的方法:任何函数都可以写成两个达布函数的和,如果每个达布函数都有原函数,那么任何函数都有原函数,这是显然不可能。下面的链接包含了完整的证明,里面需要你学过一点实分析。我也附上了完整的证明。其实挺难的。

mathproblems123.files.wordpress.com



第二个“暴力”的方法: 有人构造出了一个函数具有达布性质,但是原函数不存在,这个例子由conway构造出来,学过泛函分析的人知道这位大师。

Conway base 13 function

对了,这个例子我还得解释一下,这个函数特点是无处连续的,但是用Baire纲定理可以证明,一个函数的导数必须在某个地方是连续的(可以证明连续点全体必须是一个稠密的集),自然不可能无处连续。这个结果的完整论述需要学过泛函分析,我不清楚题主学过没有。




  

相关话题

  有哪些定理在高维情况下与三维情况下培养出来的直觉不符? 
  有没有添加一类特殊函数扩充初等函数的方式使得对该集合积分形成封闭域? 
  你见过哪些堪称绝妙的数学证明? 
  请问这道数分题目该如何处理呢,如下? 
  类似于勒让德函数和贝塞尔函数的函数还有哪些? 
  想知道这个定积分怎么算?∫[0-1](arcsin√x)/√(1-x+x^2)dx? 
  请问一下如何求解下面这个积分的值? 
  抛掷a0枚硬币,表面朝上的枚数为a1,然后再投掷a1枚硬币类推,这样最后an的概率分布可求吗? 
  求教一道积分证明题如何做? 
  如何证明 e^π>23? 

前一个讨论
极坐标下,形如 r = (sin(kθ)/sin((n + k)θ)) l 的曲线如何判断形状?
下一个讨论
X²+Y²+Z²=114514存在多少组整数解?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利