百科问答小站 logo
百科问答小站 font logo



是否所有简单闭曲线都同胚与圆周? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

只是同胚的话,这个从定义就可以直接看出,因为闭区间的两个端点粘起来就是圆。下面稍微严格地写写大体思路。回顾简单闭曲线的定义:

  1. (曲线) 的连续映射
  2. (闭)
  3. (简单) 限制在 上是单射

按如下步骤证明 同胚于 :

  1. 令 是 的周期性延拓(就是说,先把 加一个整数拉到 上,再复合 ),去证明 是连续映射( 附近要小心)
  2. 从而 , ( 赋予商拓扑)是连续映射
  3. 注意 是双射
  4. 再由于 是紧的并且 是Hausdorff的,故 是同胚映射[1]
  5. 由此,

参考

  1. ^ Theorem 26.6, Munkres



  

相关话题

  怎样从生化危机里的激光网格逃生? 
  如何只通过计算证明“两点之间,线段最短”? 
  如何计算一组三维空间角度数据的方差(或者说离散程度)? 
  如何证明这个关于复分析的问题? 
  有哪些神奇的数学巧合? 
  如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集? 
  如何证明半径为 a 的圆内的一条闭曲线必有一点点曲率大于 1/a? 
  为什么正方体有十一种展开图? 
  设平面无限点集 S 满足任意两点的距离都是正整数,如何证明 S 中的点全共线? 
  为什么任给一个圆,它的圆周长和直径比值都是常数? 

前一个讨论
如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集?
下一个讨论
一般度量空间内的连续映射将闭集映为闭集吗?将有界闭集映为有界闭集吗?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利