百科问答小站 logo
百科问答小站 font logo



是否所有简单闭曲线都同胚与圆周? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

只是同胚的话,这个从定义就可以直接看出,因为闭区间的两个端点粘起来就是圆。下面稍微严格地写写大体思路。回顾简单闭曲线的定义:

  1. (曲线) 的连续映射
  2. (闭)
  3. (简单) 限制在 上是单射

按如下步骤证明 同胚于 :

  1. 令 是 的周期性延拓(就是说,先把 加一个整数拉到 上,再复合 ),去证明 是连续映射( 附近要小心)
  2. 从而 , ( 赋予商拓扑)是连续映射
  3. 注意 是双射
  4. 再由于 是紧的并且 是Hausdorff的,故 是同胚映射[1]
  5. 由此,

参考

  1. ^ Theorem 26.6, Munkres



  

相关话题

  是否可以用积分证明球面三角形的面积为 S=A+B+C-π? 
  这道几何题怎么证明? 
  如何证明这个复变函数列的一致收敛性? 
  为什么尺规不能三等分一个任意角? 
  安卓手机的登录密码是用9点构成的图形,如何设置成最复杂的形状? 
  f(x)[x是向量]满足什么性质的时候才能使得f(x)=c的一边是f(x)>c,另一边是f(x)<c? 
  一道初三数学几何题。目前用arctan和tan的无脑计算可以求出来,请问还有其他方法吗?向量?或其它? 
  为什么拓扑的连续映射不倒着定义? 
  二维空间有四色定理,那三维空间中存在 n 色定理吗?如果有,那么是几色定理? 
  为什么n维欧式空间中的单位球面(n-1 sphere)的表面积和体积,在 n 趋于 ∞ 时,都趋于0? 

前一个讨论
如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集?
下一个讨论
一般度量空间内的连续映射将闭集映为闭集吗?将有界闭集映为有界闭集吗?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利