百科问答小站 logo
百科问答小站 font logo



是否所有简单闭曲线都同胚与圆周? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

只是同胚的话,这个从定义就可以直接看出,因为闭区间的两个端点粘起来就是圆。下面稍微严格地写写大体思路。回顾简单闭曲线的定义:

  1. (曲线) 的连续映射
  2. (闭)
  3. (简单) 限制在 上是单射

按如下步骤证明 同胚于 :

  1. 令 是 的周期性延拓(就是说,先把 加一个整数拉到 上,再复合 ),去证明 是连续映射( 附近要小心)
  2. 从而 , ( 赋予商拓扑)是连续映射
  3. 注意 是双射
  4. 再由于 是紧的并且 是Hausdorff的,故 是同胚映射[1]
  5. 由此,

参考

  1. ^ Theorem 26.6, Munkres



  

相关话题

  如何理解微分几何中的『联络』? 
  如何理解 Van-Kampen 定理? 
  数学中,类似 π、e 的独立的常数还有哪些? 
  除了 3,4,5 以外是否还有别的三角形,它的三条边是连续自然数,它的面积也是自然数? 
  为什么我觉得这样的同胚根本不存在,可以帮我看一下这个问题吗? 
  正方体的体对角线垂直吗? 
  割圆术就算割了∞次,它和真实面积也相差很小一部分,怎么就说它就可以等于真实面积? 
  Pn(z)是首项系数为1的n次多项式,怎么证明当|z|<=1时,|Pn(z)|的最大值大于等于1? 
  看到正方形能想到什么? 
  为什么该图形红蓝面积相等? 

前一个讨论
如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集?
下一个讨论
一般度量空间内的连续映射将闭集映为闭集吗?将有界闭集映为有界闭集吗?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利