百科问答小站 logo
百科问答小站 font logo



是否所有简单闭曲线都同胚与圆周? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

只是同胚的话,这个从定义就可以直接看出,因为闭区间的两个端点粘起来就是圆。下面稍微严格地写写大体思路。回顾简单闭曲线的定义:

  1. (曲线) 的连续映射
  2. (闭)
  3. (简单) 限制在 上是单射

按如下步骤证明 同胚于 :

  1. 令 是 的周期性延拓(就是说,先把 加一个整数拉到 上,再复合 ),去证明 是连续映射( 附近要小心)
  2. 从而 , ( 赋予商拓扑)是连续映射
  3. 注意 是双射
  4. 再由于 是紧的并且 是Hausdorff的,故 是同胚映射[1]
  5. 由此,

参考

  1. ^ Theorem 26.6, Munkres



  

相关话题

  如果世界上没有三角形会咋样? 
  各位大佬,这题怎么做?球了? 
  微博里的27个三角形是怎么数出来的? 
  一个关于T2与紧性的拓扑问题,如何证明? 
  Cauchy定理的证明是否依赖于Jordan曲线定理? 
  在一块边长为a的大正方形中,任意地挖掉一块各边平行或垂直于大正方形的边长为a/2的小正方形? 
  一个空间中勾股定理不存在,而变成了 c^4=a^4+b^4,甚至有更高的指数,那么这是一种什么空间? 
  如果在莫比乌斯带或者球面上下围棋会怎么样? 
  一个半径为10的大圆能剪出几个半径为1的小圆? 
  共有几个三角形? 

前一个讨论
如何证明全体n维正交矩阵组成的集合是全体n维矩阵集合上的紧集?
下一个讨论
一般度量空间内的连续映射将闭集映为闭集吗?将有界闭集映为有界闭集吗?





© 2025-05-17 - tinynew.org. All Rights Reserved.
© 2025-05-17 - tinynew.org. 保留所有权利