百科问答小站 logo
百科问答小站 font logo



数学分析中的两个反例是否有更深的背景? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

考虑这个函数的解析域。

设算子

解析当且仅当[1]

但是当 时,上面的运算失去意义,故 在零点不解析,事实上零点是它的孤立本性奇点。这是因为

Picard 大定理,它在 的任意领域内可取得 的任意值,最多只有一个例外。而泰勒公式只有在某点邻域内“稳定”才能对其利用多项式进行良好的逼近,而面对本性奇点这种怪物,只能束手无策。所以 在零点趋于任何值都不用大惊小怪,可怜的孩子被玩坏了……

同理。

上图是 的模曲面,其中红轴是实轴,绿轴是虚轴。显然沿这两个方向接近原点,极限不同。

参考

  1. ^ 龚昇《简明复分析》1.3



  

相关话题

  这道极限怎么求呢? 
  高中生能独自推导出 π 的计算公式是什么水平? 
  你所在数学领域的 big picture 是什么? 
  这是什么公式对不对? 
  从小到大,老师教的到底是数学还是做题? 
  为什么会有 i 这一虚数?可以求出 i 的值吗? 
  如何看待李吟对新冠肺炎与留学生的言论? 
  退休后的数学家或物理学家通常怎么打发生活? 
  如何让一个 5 岁小孩听懂什么是选择公理? 
  这个全椭圆积分和beta函数的关系该怎么证明? 

前一个讨论
如图题,如何不用“强拆”的方式证明?
下一个讨论
已知一个圆,一个点和一条直线,如何找到一个与圆相切过点且圆心在直线上的圆?





© 2025-05-07 - tinynew.org. All Rights Reserved.
© 2025-05-07 - tinynew.org. 保留所有权利