百科问答小站 logo
百科问答小站 font logo



群论和拓扑的关系是什么?群论本来就是拓扑的一种形式? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

设 是拓扑空间 的拓扑基,等价于:

其中


我们把并集视为乘法:若 ,则

即乘法封闭。而且这个乘法满足交换律、结合律,还有单位元:

但是没有逆元,因为对于非空集合 ,不存在集合 使得

所以这是一个阿贝尔幺半群


如果我非要构造逆元素呢?

对称差就是我们需要的乘法。

这里我们需要假设:若 ,则 。这其实是一个集代数了。(再加上可以取上极限,就是大名鼎鼎的 -代数了)。

对称差满足交换律和结合律,请读者自证。

  • 空集是单位元: ;
  • 但是逆元是自己:

以上,我们构造了一个阿贝尔群。这个群里的元素都是二阶元




  

相关话题

  科学为何有那么多近似计算?这样是不是和科学的严谨性相违背? 
  这个9题不等式右边怎么证明呢? 
  求问数学公式推导? 
  一个空间中勾股定理不存在,而变成了 c^4=a^4+b^4,甚至有更高的指数,那么这是一种什么空间? 
  如何证明以下关于ζ(2n)的式子? 
  经济学家的数学是否都很好? 
  在知乎上什么样的数学问题最好不要回答? 
  是否存在一个函数,在它定义域内连续,递增,但处处不可导? 
  三分之一等于零点三三循环,而三分之一乘3等于一,用零点三三循环乘三却等于零点九九循环? 
  如何通俗易懂地解释「协方差」与「相关系数」的概念? 

前一个讨论
上帝可能造出一个他搬不动的石头吗?
下一个讨论
如何以「我觉得代数拓扑实在是太简单了」开头写一篇故事?





© 2025-04-25 - tinynew.org. All Rights Reserved.
© 2025-04-25 - tinynew.org. 保留所有权利