百科问答小站 logo
百科问答小站 font logo



如何证明下面的复分析问题? 第1页

  

user avatar   karron 网友的相关建议: 
      

不是单连通区域会有反例,比如考虑

知 是 上整体定义的 1-形式。

假设存在 上的全纯函数 使得 ,

那么由 知, 。

所以 ,矛盾。

反例其实可以从单连通情形的证明中看出来:

命题:设 是单连通黎曼曲面, 为全纯函数,则存在全纯函数 ,使得 。

证明如下:

注意到 是整体定义的 1-形式,且它是闭的 ( )。

由 单连通 ( ),知 是恰当的,即存在 使得 。由 全纯可知 也是全纯的。

注意到 ,于是 。

则 即为所求的全纯函数,这里 表示多值函数 在固定的一个单叶解析分支里 的取值。




  

相关话题

  一个月内学好复变函数可行吗? 
  如何计算这个积分? 
  ∫(1+2cosθ)/(5+4cosθ)dθ这个积分怎么求? 
  关于数学有什么有趣的笑话? 
  作为维数公式的黎曼-洛赫定理在数学上的重要性体现在什么地方? 
  函数能导成超导吗? 
  一道复变函数证明题怎么做? 
  复变函数中多值函数的黎曼面是不是不唯一? 
  如何证明“若整函数 f(z) 的值均位于右半平面,则f(z)恒为常数”? 
  如何简洁地证明二次互反律?有哪些具体应用? 

前一个讨论
关于一道数学题的解答,学而思的解答是否更好?
下一个讨论
小球在波浪面轨道运动比直线轨道速度快是什么原理?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利