百科问答小站 logo
百科问答小站 font logo



如何判断下面这个级数的敛散性? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

这题可以用初等方法做。需要一些技巧。






其中 。可以看出,如果我们能证明对充分大的 有 ,上面不等式右边的前两项就发散(调和级数),最后一项有界,所以原级数发散。所以我们用反证法,假设存在任意大的 使得 。

那项容易估计:
。因此我们知道,存在 使得 (当 )。

要估计这项,可以先平方,再用上面的方法估计:

其中 , , 是最接近 的整数。

设 ,那么

由不等式 ,有 ,所以 (当 )。由 的定义,如果把区间 等分为 段,那么一定有一段里有两个整数 使得 ,并且 都不小于 ,其中 是 离最接近 的整数的距离。所以 和 都不大于 。这样就有 和 (当 )。令 ,我们得到存在整数 使得 ,这与 是无理数矛盾。




  

相关话题

  闭区间上的导函数f'有界,是否可以在闭区间上取到最大值,最小值? 
  是否存在一个函数,在它定义域内连续,递增,但处处不可导? 
  如何证明求导是线性变换? 
  如何比较这两个数的大小? 
  有没有什么适合计算机计算超长位数圆周率的无穷级数? 
  为什么中国本土出不了拿菲尔兹奖的数学家? 
  是否存在这样一个初等函数:它的三阶导数是其本身,而一、二阶导数不是其本身? 
  这个9题不等式右边怎么证明呢? 
  什么是实数? 
  这个相关系数背景的证明题如何做? 

前一个讨论
调和级数变形一下成为收敛了,能给个证明吗?
下一个讨论
过氧化钠有漂白性吗?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利