百科问答小站 logo
百科问答小站 font logo



如何判断下面这个级数的敛散性? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

这题可以用初等方法做。需要一些技巧。






其中 。可以看出,如果我们能证明对充分大的 有 ,上面不等式右边的前两项就发散(调和级数),最后一项有界,所以原级数发散。所以我们用反证法,假设存在任意大的 使得 。

那项容易估计:
。因此我们知道,存在 使得 (当 )。

要估计这项,可以先平方,再用上面的方法估计:

其中 , , 是最接近 的整数。

设 ,那么

由不等式 ,有 ,所以 (当 )。由 的定义,如果把区间 等分为 段,那么一定有一段里有两个整数 使得 ,并且 都不小于 ,其中 是 离最接近 的整数的距离。所以 和 都不大于 。这样就有 和 (当 )。令 ,我们得到存在整数 使得 ,这与 是无理数矛盾。




  

相关话题

  有且仅有函数e^x的导数与本身相等吗?如何证明? 
  作为一名非数学专业(电子工程,物理)的学生,怎么样让自己的水平达到介于数学专业以及非数学专业的水平? 
  为什么不能简单将集合E的【上确界】定义成由E的所有上界组成之集的最小元? 
  1,2,3,…,n。去掉1,将2挪在n后;去掉3,将4挪在2后,按此规律进行下去,最后留下的数字是? 
  微积分的哲学基础是什么? 
  没有高等数学基础,怎样才能理解研究哥德巴赫猜想? 
  这个不等式怎么做? 
  为什么多项式的根是系数的连续函数? 
  请问这道幂级数的题目如何做呢? 
  二重积分经过变量变换后,为什么原有闭区域的边界点也是新区域的边界点? 

前一个讨论
调和级数变形一下成为收敛了,能给个证明吗?
下一个讨论
过氧化钠有漂白性吗?





© 2025-05-28 - tinynew.org. All Rights Reserved.
© 2025-05-28 - tinynew.org. 保留所有权利