百科问答小站 logo
百科问答小站 font logo



如下图,这个级数如何求出来呢? 第1页

  

user avatar   herik-49 网友的相关建议: 
      

提供一个基于留数的方法。

首先我们把原问题中的级数扩展一下,考虑如下的级数

简单地观察可以发现,对于整数 ,有 ,因此这个新的级数等于原题中级数的两倍。

现在我们定义一个新的函数

容易看出每个整数点均为 的一个极点,且它在每个整数点上的留数分别等于我们定义的级数的每一项,也就是说

此外还注意到, 也是一个极点,因此我们在复平面中画出所有极点的分布

图中星号代表函数 的极点,级数中的每一项分别对应了蓝色极点处的留数,每一个小圆路径均沿逆时针,将这些路径进行合并,并利用函数 在无穷远处去的衰减性质,我们得到下面一个新的路径

注意红色极点的留数并不包含在级数中,因此路径在 处绕了个弯。这样沿着新的积分路径,我们立刻可以看出 在其上的积分等于

根据 在 的Taylor展开容易求出 在这一点的留数为 ,

因此级数 ,

所以原题中的级数等于 。

利用这样的留数法可以十分方便地解析计算一大批级数问题,更多细节可以参看Walter Appel的《Mathematics for physics and physicists》中4.6.e小节。


user avatar   zhong-shan-15-34 网友的相关建议: 
      

将 ,展开为 级数,得到

将 代入,得到

移项就得到了


当然,如果你会 函数,还可以有


实际上这应该是Dirichlet—beta函数.还有别的做法,比如转换为积分

或是留数定理(我⑧会)

还有更一般性的结论,链接丢在这里了


user avatar   myaries10000 网友的相关建议: 
      

首先介绍狄利克雷beta函数(Dirichlet beta function):

而题目正是求 的值。

其实这个函数在 处的函数值都有 ,本文的目标就是把他们统统都求出来!

显然 , (卡塔拉常数)

下面进入复变的世界,坐稳喽————

令 ,其中 为正整数。构造一个 正方形围道:

这函数在全平面的奇点是 以及 ,注意这个 是 级极点。

计算留数:

注意到欧拉数定义: [1]

所以:

[2]

根据它,我们可以求出:

所以

由留数定理:

[3]

现在,令 ,则 式变为:

解得:

然后可以开启开挂模式了:

……

附:前几个欧拉数( 都为零)


参考

  1. ^欧拉数(维基百科) https://en.m.wikipedia.org/wiki/Euler_numbers
  2. ^请问这四个展开式是怎么来的? - Aries的回答 - 知乎  https://www.zhihu.com/question/398250488/answer/1263706418
  3. ^初三党搞积日常(2)——从复变角度解决巴塞尔问题(The Basel Problem) - Aries的文章 - 知乎 https://zhuanlan.zhihu.com/p/143842181



  

相关话题

  有没有符合f'(x)=f(x+1)的函数? 
  如何解决这个数学分析问题? 
  数学系的鄙视链是什么? 
  平面有界凸集上的点到其重心的最大距离是其直径的比例的上界是多少呢? 
  π 的数字排列中能否找到 e 的数字排列? 
  怎么求这个极限问题? 
  用数学知识写出的小说是怎样的? 
  问一个数学分析函数连续性的反例? 
  这道函数问题怎么解决? 
  定义欧拉常数到底意义何在? 

前一个讨论
B 站什么时候会彻底去 ACG 化?
下一个讨论
高中数学有必要学习一些高数知识吗?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利