百科问答小站 logo
百科问答小站 font logo



这个极限怎么写? 第1页

  

user avatar   yu-yiren-62 网友的相关建议: 
      

一、这可能是最简单做法

这个问题做法不少,但最简单的莫过于直接利用如下定理,聪明的读者将会发现,这个引理与Lebesgue控制收敛定理(dominated convergence theorem)极其相似,事实上,这几乎就是它的离散型版本。这定理是说:

设 对每一个 都收敛,即 且有界,即 其中 与 无关。若 收敛,则

这个定理的价值在于,允许在一定条件下交换求和与取极限的次序。如果利用它来求解当前问题,则只需命 容易验证定理适用条件均已齐备:

于是依定理即得

二、另外一种门槛更低的做法

这里我补充一种门槛更低的做法,只需要用到序列上、下极限的一些最基本的知识。

首先,选定某个 并让 这就将有

命 中的 就有

显然 对一切 成立,于是命其中的 就有

另一方面,依常见不等式 可以导出 如此就有 命 中的 也应成立

综合 就是

这清楚地表明了


user avatar   zhe-ci-bu-neng 网友的相关建议: 
      

注意到

立即有




  

相关话题

  如何判断这个反常积分的判敛性? 
  有哪些高等数学实际应用的书? 
  这个命题是错的吗? 
  为什么复变函数中定义无穷远点的留数时积分路线的方向是负的? 
  如何证明如下积分等式? 
  这个极限怎么凑成积分? 
  大一数学分析学习是偏证明还是偏计算? 
  如果有一个初三学生说他懂微积分,我该怎么应对? 
  非数学专业《高等数学》里学的微分方程和数学系学的《常微分方程》有什么差别呢? 
  这两个积分怎么做? 

前一个讨论
如何评价数海钓鱼将钓鱼题广泛传播的行为?
下一个讨论
这个矩阵怎么求啊?求各位大佬解答?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利