百科问答小站 logo
百科问答小站 font logo



为什么积分中值定理最初证明的ξ在闭区间[a,b]上? 第1页

  

user avatar   yu-yiren-62 网友的相关建议: 
      

定积分中值定理依结论的强弱有两个稍微不同的版本:

Version 1.0 若 则

Version 2.0 若 则

上述两个版本的差别,仅仅在于对 存在的区间断定有所不同,1.0版本断言的是闭区间,2.0版本断言的是开区间。由于后者可以在逻辑上蕴含前者,给出的 位置更为具体,因此,2.0可以视为1.0的加强版。

为何会出现这样两个不同的版本呢?原因是大多数教材的处理方式。1.0版本是在引入微积分基本公式(即Newton-Leibniz公式)之前就用连续函数的介值定理推证出来的,而介值定理的结论较弱,它无法排除 在区间端点的可能性。而2.0版本是在引入微积分基本公式之后,借助变上限积分函数的构造,用Lagrange中值定理证得的,它挖掘出更多的信息作为条件,因此就让结论升级。




  

相关话题

  狄利克雷函数(Dirichlet Function)有什么用处? 
  有没有这样的函数,其一阶导等于1,二阶导等于2,三阶导等于3,n阶导等于n,n一直趋于无穷大? 
  教授留的思考题,请问这个积分怎么求? 
  高数证明问题..?为什么能联想到取1为一个节点? 
  大四年级,完全没接触过高数,目前对机器学习产生浓厚兴趣,该如何学习数学? 
  请问这个积分正确吗,如果是的话该如何得到呢? 
  能否绝对地区分出虚数 i 与 -i? 
  有哪些高等数学实际应用的书? 
  这个定积分应该怎样计算呢? 
  请问这道极限怎么做? 

前一个讨论
如何证明求导是线性变换?
下一个讨论
利用微分法计算定积分的结果是真实值吗?





© 2025-06-18 - tinynew.org. All Rights Reserved.
© 2025-06-18 - tinynew.org. 保留所有权利