百科问答小站 logo
百科问答小站 font logo



收敛的序列是否存在单调的子序列(不要求严格单调)? 第1页

  

user avatar   dhchen 网友的相关建议: 
      

首先,不需要收敛。

事实上任意实数列都有单调子序列。

设 是一个数列,如果其中一个元素 大于或者等于所有它之后的元素,也就是 ,

那么我们管这个元素叫peak。对于一个数列有两种可能:有无限个peak和只有有限个peak。

如果是第一种情况,那么这些peak构成一个单调递减的子序列。

如果是第二种情况,我们知道只要 充分大之后, 就不是peak了,那么对于它我们肯定能找到一个元素 ,元素 也不是peak,于是可以找到一个 .以此类推我们可以得到一个单调递增的子序列。

这个定理的用处蛮大的,一个有趣的应用是证明任何的有界的序列必然有收敛子序列,首先根据这个定义知道一个单调序列,然后这个序列必然有界,于是根据确界原理,这个序列是收敛的。




  

相关话题

  如何推导如下积分列极限? 
  代数拓扑为什么研究同调? 
  如何反对同学这样解释无理数和有理数一样多? 
  怎么证明:拓扑学家的曲线连通但不道路连通? 
  预测一下到今年年底本轮中美搏弈的结果大概率是什么? 
  这道数列极限题该怎么做啊? 
  区间连续是逐点定义的,从而有区间上一致连续的概念。区间可导也是逐点定义的,为什么没有一致可导的概念? 
  女生难道就不能学物理或数学专业吗? 
  可以留下一个优美的不等式吗? 
  高等数学和生物技术有什么关系? 

前一个讨论
如何评价「Shut up and calculate」这句话?
下一个讨论
高中数学教材中的排列符号何时从 P 变成了 A,为什么?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利